

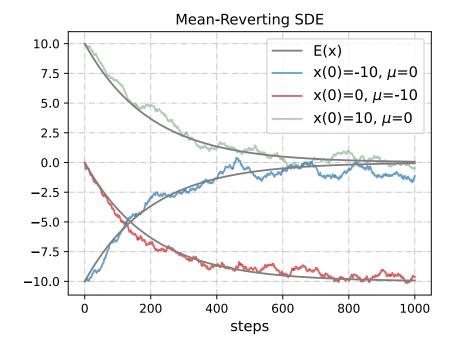
Image Restoration with Mean-Reverting Stochastic Differential Equations

Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön

Uppsala University

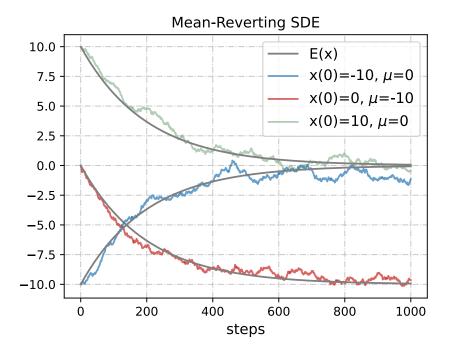
Project Page

Mean-Reverting SDE for image restoration



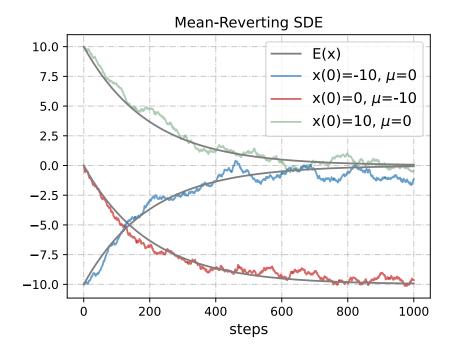
Mean-Reverting SDE for image restoration

• Tractable *mean* and *variance* \rightarrow **score**



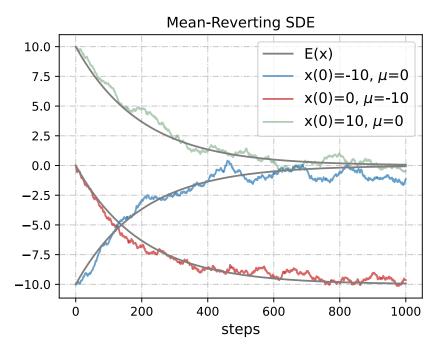
Mean-Reverting SDE for image restoration

- Tractable *mean* and *variance* \rightarrow **score**
- Naturally simulate degradation \rightarrow **no-prior**



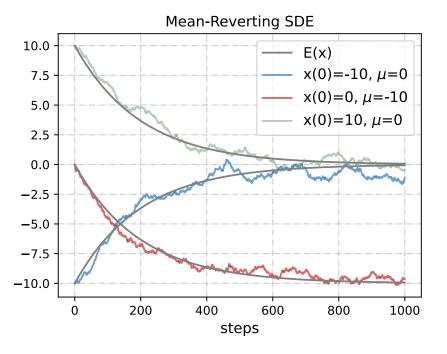
Mean-Reverting SDE for image restoration

- Tractable *mean* and *variance* \rightarrow **score**
- Naturally simulate degradation \rightarrow **no-prior**
- Maximum likelihood learning → stable training



Mean-Reverting SDE for image restoration

- Tractable *mean* and *variance* \rightarrow **score**
- Naturally simulate degradation \rightarrow **no-prior**
- Maximum likelihood learning → stable training



Our approach (**IR-SDE**) achieves highly competitive performance on various tasks.

Forward SDE for Image Degradation

Forward SDE for Image Degradation

Forward SDE: $dx = \theta_t (\mu - x) dt + \sigma_t dw$

• We can mathematically prove that this SDE has a closed-form solution when θ_t and σ_t satisfy $\frac{{\sigma_t}^2}{2\theta_t} = \lambda^2$ (stationary variance):

$$p(x(t) \mid x(s)) = \mathcal{N}(x(t) \mid m_{s:t}(x(s)), v_{s:t})$$

$$\begin{split} m_{s:t}(x_s) &\coloneqq \mu + (x(s) - \mu) e^{-\bar{\theta}_{s:t}}, \\ v_{s:t} &\coloneqq \int_s^t \sigma_z^2 e^{-2\bar{\theta}_{z:t}} dz \\ &= \lambda^2 \left(1 - e^{-2\bar{\theta}_{s:t}} \right), \quad \text{where } \bar{\theta}_{s:t} \coloneqq \int_s^t \theta_z dz \end{split}$$

Reverse-Time SDE for Image Restoration

Reverse-time SDE:
$$dx = \left[\theta_t \left(\mu - x\right) - \sigma_t^2 \nabla_x \log p_t(x)\right] dt + \sigma_t d\hat{w}$$

Reverse-Time SDE for Image Restoration

Reverse-time SDE:
$$dx = \begin{bmatrix} \theta_t (\mu - x) - \sigma_t^2 \nabla_x \log p_t(x) \end{bmatrix} dt + \sigma_t d\hat{w}$$

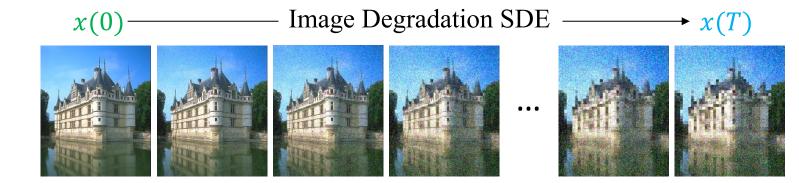
Score
In training: $\nabla_x \log p_t(x \mid x(0)) = -\frac{x(t) - m_t(x)}{v_t}$

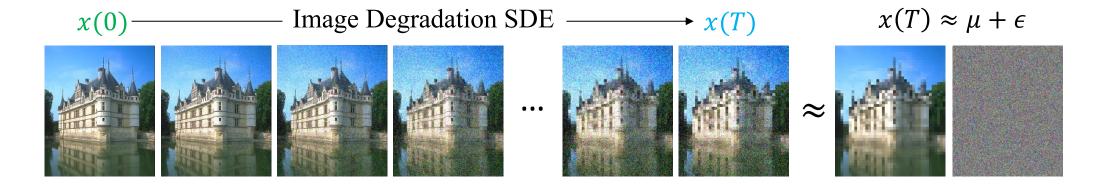
Reverse-Time SDE for Image Restoration

Reverse-time SDE:
$$dx = \begin{bmatrix} \theta_t (\mu - x) - \sigma_t^2 \nabla_x \log p_t(x) \end{bmatrix} dt + \sigma_t d\hat{w}$$

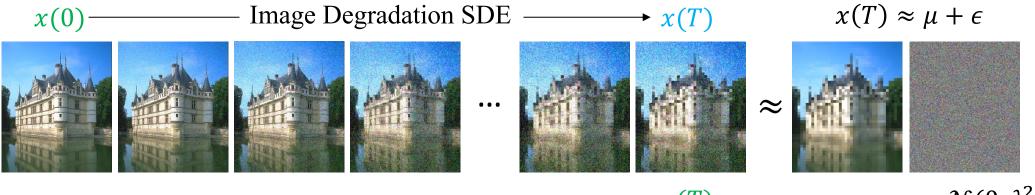
Score
In training: $\nabla_x \log p_t(x \mid x(0)) = -\frac{x(t) - m_t(x)}{v_t}$

Noise Matching Loss:
$$L_{\gamma}(\phi) \coloneqq \sum_{i=1}^{T} \gamma_i \mathbb{E} \Big[\big\| \tilde{\epsilon}_{\phi}(x_i, \mu, i) - \epsilon_i \big\| \Big]$$



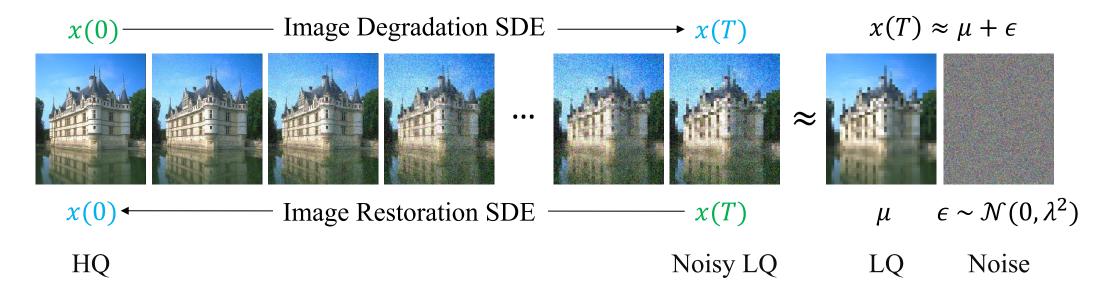


Forward SDE: $dx = \theta_t (\mu - x) dt + \sigma_t dw$



x(T) μ $\epsilon \sim \mathcal{N}(0, \lambda^2)$ Noisy LQLQNoise

Forward SDE: $dx = \theta_t (\mu - x) dt + \sigma_t dw$



Reverse-time SDE: $dx = [\theta_t (\mu - x) - \sigma_t^2 \nabla_x \log p_t(x)] dt + \sigma_t d\hat{w}$

Reverse-Time Restoration Process

Reverse-Time Restoration Process

Consider the following reverse process

$$p(x_{1:T} \mid x_0) = p(x_T \mid x_0) \prod_{i=2}^T p(x_{i-1} \mid x_i, x_0)$$

Consider the following reverse process

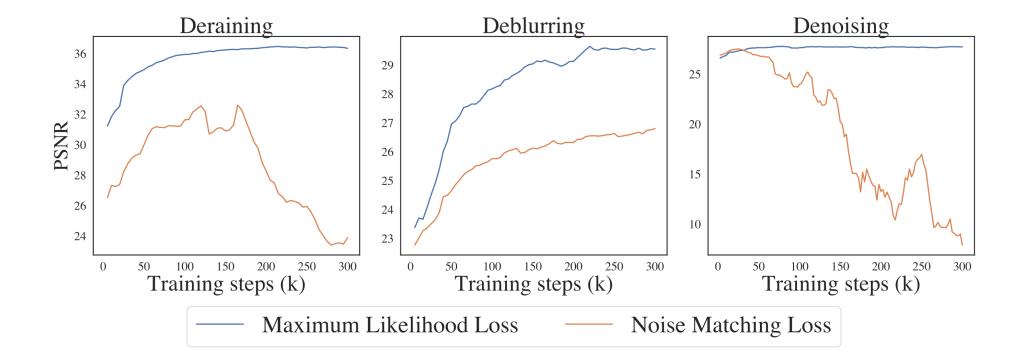
$$p(x_{1:T} \mid x_0) = p(x_T \mid x_0) \prod_{i=2}^T p(x_{i-1} \mid x_i, x_0)$$

By minimizing the negative log-likelihood, we can get the optimal reverse state

$$\begin{aligned} x_{i-1}^* &= \arg\min_{x_{i-1}} \left[-\log p(x_{i-1} \mid x_i, x_0) \right] \\ &= \frac{1 - e^{-2\bar{\theta}_{i-1}}}{1 - e^{-2\bar{\theta}_i}} e^{-\theta'_i}(x_i - \mu) \\ &+ \frac{1 - e^{-2\bar{\theta}_i}}{1 - e^{-2\bar{\theta}_i}} e^{-\bar{\theta}_{i-1}}(x_0 - \mu) + \mu. \end{aligned}$$

Maximum likelihood loss function:

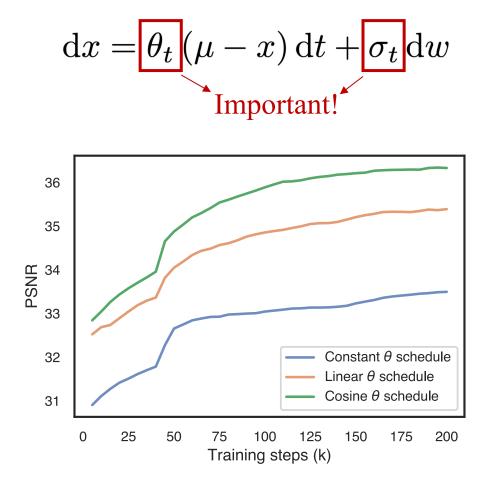
$$J_{\gamma}(\phi) \coloneqq \sum_{i=1}^{T} \gamma_{i} \mathbb{E} \Big[\Big\| \underbrace{x_{i} - (\mathrm{d}x_{i})_{\tilde{\epsilon}_{\phi}}}_{\mathrm{reversed} \, x_{i-1}} - x_{i-1}^{*} \Big\| \Big]$$



Time-Varying *θ* **Schedules**

 $dx = \theta_t (\mu - x) dt + \sigma_t dw$ Important!

Time-Varying *θ* **Schedules**

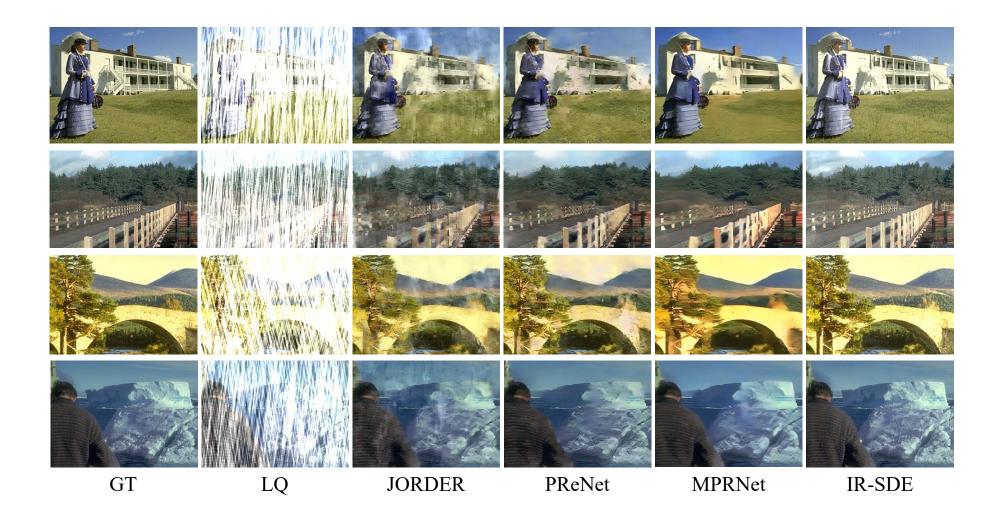


Training curves of three different time-varying θ schedules.

Experiments

> Deraining

- Super-Resolution
- Deblurring
- Inpainting
- Denoising
 - > Dehazing

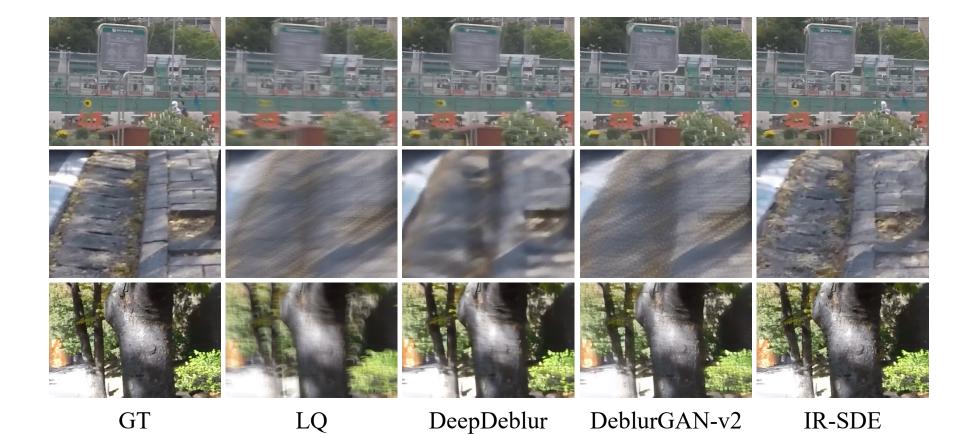


Метнор	DISTORTION		Perceptual		
	PSNR ↑	SSIM↑	LPIPS↓	FID↓	
JORDER	26.25	0.8349	0.197	94.58	
PRENET	29.46	0.8990	0.128	52.67	
MPRNET	30.41	0.8906	0.158	61.59	
MAXIM	30.81	0.9027	0.133	58.72	
CNN-BASELINE	29.12	0.8824	0.153	57.55	15
IR-SDE	31.65	0.9041	0.047	18.64	

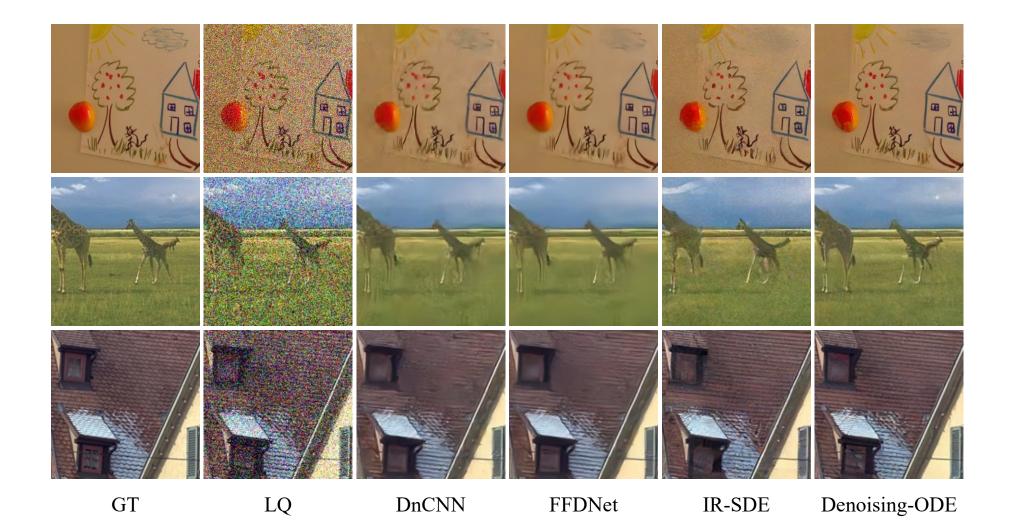
Quantitative comparison between the proposed IR-SDE with other image deraining approaches on the Rain100H test set.

Deblurring

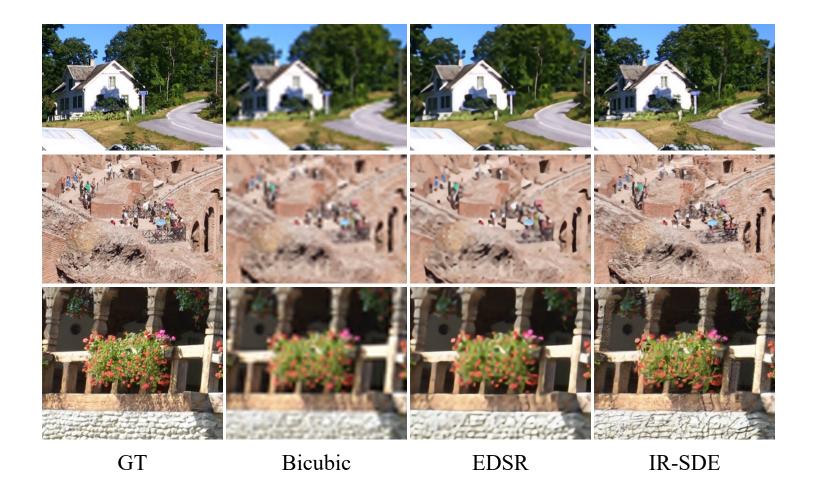
UNIVERSITET

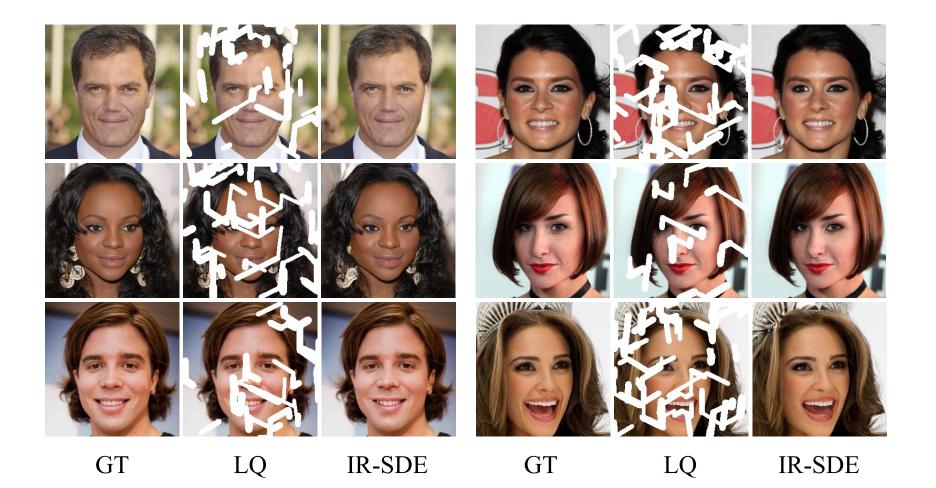


UPPSA UNIVER



Super-Resolution





• We proposed a mean-reverting SDE for general-purpose image restoration.

- We proposed a mean-reverting SDE for general-purpose image restoration.
- We designed a maximum likelihood loss to stabilize training and improve results.

- We proposed a mean-reverting SDE for general-purpose image restoration.
- We designed a maximum likelihood loss to stabilize training and improve results.
- Our approach achieves highly competitive performance on diverse image restoration tasks.

Thanks

Project Page