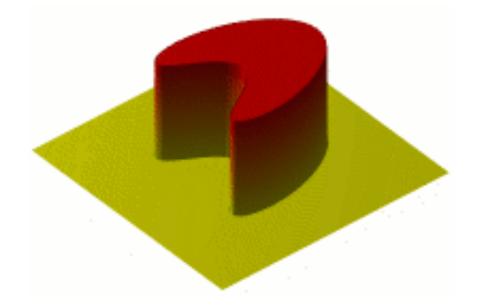
Neural Network Approximations Of PDEs Beyond Linearity: A Representational Perspective

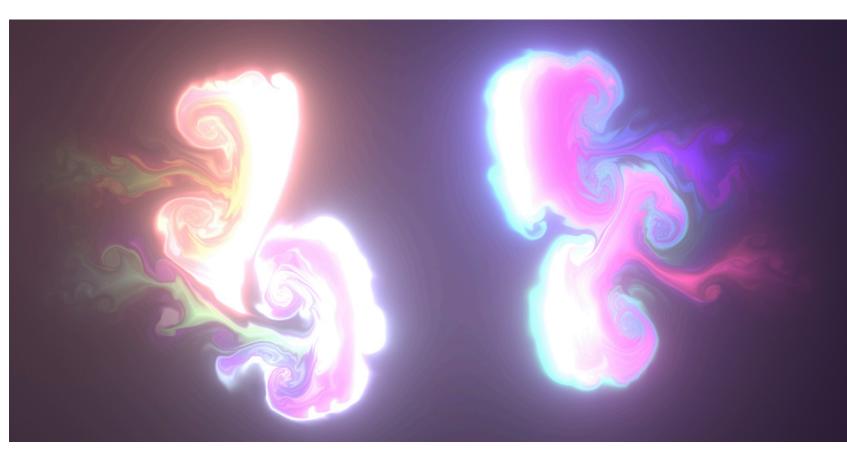
Tanya Marwah¹, Zachary C. Lipton¹, Jianfeng Lu², Andrej Risteski¹

¹Machine Learning Department, Carnegie Mellon University ²Department of Mathematics, Duke University

Partial Differential Equations



A partial differential equation (PDE) relates a multivariate function defined over some domain to its partial derivates.



Solving PDEs using Neural Networks

Why Neural networks?

- Mesh free. Trained using Monte-Carlo approximation of the variational formulation (E) and Yu. 2017)
- Can be used to approximate solutions to entire families of PDEs (Li et al. 2020)

Theoretical Analysis:

- For what families of PDEs, can the solution be represented by a small neural network?
- Previous work (Marwah et al (2021), and Chen at al (2021)) show that for linear elliptic PDEs approximating neural networks have a polynomial dependence on input dimension.
 - We extend these works to a family of nonlinear PDEs

Nonlinear Elliptic PDE

For a strongly convex function $L: \Omega \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$, we first define an Energy functional:

$$\mathscr{E}(u) = \int_{\Omega} \left(L(x, u(x), \nabla u(x)) - f(x)u(x) \right) dx.$$

Nonlinear Elliptic PDE: $D\mathscr{E}(u) := -\operatorname{div}(\partial_{\nabla u}L(x))$ for all $x \in \Omega$ and u(x) = 0 for all $x \in \partial x$

$$(x, u, \nabla u)) + \partial_u L(x, u, \nabla u) = f$$

$$\Omega.$$

Here div denotes the divergence operator: Given a vector field $F : \mathbb{R}^d \to \mathbb{R}^d$, div $F = \nabla \cdot F = \sum_{i=1}^d \frac{\partial F_i}{\partial x_i}$

Barron Norm

- For $f: [0,1]^d \to \mathbb{R}$, Fourier transform: $\hat{f}(\omega) = \int_{[0,1]^d} f(x) dx$
- Then the **Barron Norm** ($\| \cdot \|_{\mathscr{B}}$) of the function f is defined as: $||f||_{\mathscr{B}} = \sum (1 + ||\omega||_2) |\hat{f}(\omega)|.$ $\omega \in \mathbb{N}^d$

Classical result from **Barron (1993)** shows that if $||f||_{\mathscr{B}}$ is bounded then the function f can be represented by a ϵ -approximated by a two layer neural network with $O\left(\frac{\|f\|_{\mathscr{B}}^2}{\epsilon}\right)$ parameters.

$$e^{-i2\pi x^T\omega}dx, \quad \omega \in \mathbb{N}^d.$$

 ϵ -approximated in the L^2 sense by a function with Barron norm $O\left(\left(dB_L\right)^{\max\{p\log(1/\epsilon),p^{\log(1/\epsilon)}\}}\right).$

Proof Sketch:

Our Result

If composing a function with Barron norm b with partial derivatives of L produces a function of Barron norm at most $B_L b^p$, then solution to the nonlinear elliptic PDE can be

Neurally simulating a preconditioned gradient descent (for a strongly-convex loss) in an appropriate Hilbert space and bounding the growth of the Barron norm of each iterate as well as bounding the total iterations.

