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Partial Differential Equations
A partial differential equation (PDE) relates a multivariate function defined over 

some domain to its partial derivates.   



Solving PDEs using Neural Networks
Why Neural networks? 

• Mesh free. Trained using Monte-Carlo approximation of the variational formulation (E 
and Yu. 2017) 

• Can be used to approximate solutions to entire families of PDEs (Li et al. 2020) 

Theoretical Analysis: 

For what families of PDEs, can the solution be represented by a small neural network? 

Previous work (Marwah et al (2021), and Chen at al (2021)) show that for linear elliptic 
PDEs approximating neural networks have a polynomial dependence on input dimension. 

We extend these works to a family of nonlinear PDEs



Nonlinear Elliptic PDE
For a strongly convex function , we first define an Energy 
functional: 

. 

Nonlinear Elliptic PDE:  

   

for all  and  for all .

L : Ω × ℝ × ℝd → ℝ

ℰ(u) = ∫Ω (L(x, u(x), ∇u(x)) − f(x)u(x))dx

Dℰ(u) := − div(∂∇uL(x, u, ∇u)) + ∂uL(x, u, ∇u) = f

x ∈ Ω u(x) = 0 x ∈ ∂Ω

Here  denotes the divergence operator: Given a vector field div F : ℝd → ℝd, divF = ∇ ⋅ F =
d

∑
i=1
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Barron Norm
For  ,  Fourier transform:  

 

Then the Barron Norm ( ) of the function  is defined as: 

 

Classical result from Barron (1993) shows that if  is bounded then the function  can be 

represented by a approximated by a two layer neural network with  parameters.

f : [0,1]d → ℝ

̂f(ω) = ∫[0,1]d

f(x)e−i2πxTωdx, ω ∈ ℕd .

∥ ⋅ ∥ℬ f

∥f∥ℬ = ∑
ω∈ℕd

(1 + ∥ω∥2) | ̂f(ω) | .

∥f∥ℬ f

ϵ− O ( ∥f∥2
ℬ

ϵ )



Our Result
If composing a function with Barron norm  with partial derivatives of  produces a 

function of Barron norm at most  , then solution to the nonlinear elliptic PDE can be 
approximated in the  sense by a function with Barron norm

. 

Proof Sketch: 

Neurally simulating a preconditioned gradient descent (for a strongly-convex loss) in 
an appropriate Hilbert space and bounding the growth of the Barron norm of each 

iterate as well as bounding the total iterations.
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Thank You!


