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Summary

1. Lower Bounds: we show that privacy and robustness induce a coupled cost

2. Upper Bounds: we show a matching upper bound using SMEA, our new
high-dimensional robust aggregation rule



Distributed Machine Learning



Distributed Machine Learning

Motivations:

• Performance: individual machines lack computing power and data, SOTA models are
massive

• Privacy: local data should not be revealed



Distributed Machine Learning

Parameter server architecture: 1 central server, n workers holding m data points each

Parameter
server



Desiderata

1. Protection against malicious workers sending corrupt gradients/models

2. Rigorous privacy guarantees for each worker



Goal 1: Byzantine Robustness

• Byzantine workers are omniscient, computationally unbounded and may collude

(f , ϱ)-Byzantine robustness

An algorithm is (f , ϱ)-robust if it can find a ϱ−approximate minimizer despite the
presence of f Byzantine workers.

• Essentially requires a robust aggregation subroutine (median, trimmed mean, ...) and
local variance reduction



Goal 2: Differential Privacy

(ε, δ)-distributed differential privacy

An algorithm satisfies (ε, δ)-distributed DP if the transcript of external communications Z
of each worker satisfies (ε, δ)-DP with respect to their local data.

• Essentially requires local noising mechanism (Gaussian, Laplace, ...) with careful
variance tuning



Results: Lower Bounds

• Each problem is individually hard: BR and DP separately induce lower bounds:

ϱBR = Ω

(
f

n
G 2

)
, ϱDP = Ω

(
d

ε2nm2

)
,

where G measures data heterogeneity and d is the model dimension.

• Simultaneously achieving both induces a coupled lower bound:

ϱDP+BR = Ω̃

(
f

n
· 1

ε2m2

)
.
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Distributed Gradient Descent (D-GD)

• Goal: Exchange gradients to train a single global model θ minimizing loss

Parameter
server

At each iteration t:

1. Server broadcasts θt

2. Worker computes noisy gradient:

g̃
(i)
t = g

(i)
t +N (0, σ2

DP)

3. Worker updates local momentum:

m̃
(i)
t = βt−1m

(i)
t + (1− βt−1)g̃

(i)
t

4. Server aggregates momentums

Rt = F (m̃
(1)
t , . . . , m̃

(n)
t )

5. Server updates θt+1 = θt − γtRt



Results: Matching Upper Bound

• A key ingredient is the following robustness property: for any x1, . . . , xn ∈ Rd ,
H ⊆ [n], |H| = n − f , the aggregation output x̂ satisfies

∥x̂ − xH∥2 ≤ κ · λmax

(
1

|H|
∑
i∈H

(xi − xH)(xi − xH)
⊤

)
,

where κ is of order f
n for SMEA.

• Using the heavy ball method with local Gaussian mechanism and SMEA, we match
the lower bound:

ϱ = Õ

(
d

ε2nm2
+

f

n
· 1

ε2m2
+

f

n
G 2

)
.

• Interestingly in high-dimension d ≥ f , thanks to SMEA, the coupled cost is
dominated by the DP cost
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