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Collaborative Learning

» 1 nodes, each with a local dataset.
> 0= =
Communicate through asynchronous channels. ﬂ \1 / ﬂ

» Goal: Collaboratively solving a common ML task
without sharing the data:
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Q(‘): local loss of node i (non-convex)



D-SGD

Node i at learning iteration t:
» Local phase:

» take alocal step using stochastic gradient gf):
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» Coordination phase:

> Broadcast Ht(i)l /2

» Compute the average of received models:
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Convergence rate: O (0—2)
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Linear speed-up: improves with the nubmer of nodes
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Byzantine Threat Model

L= <[]
* Upto f nodes are faulty and send arbitrary

vectors to others. ﬂ \' / ﬂ



Byzantine Threat Model

* Upto f nodes are faulty and send arbitrary
vectors to others.

Can we converge in the presence of faulty nodes?
» Yes (EI-Mhamdi et al. NeurIPS 2021).

How fast?
» Previous works: Orders of magnitude slower
than D-SGD.
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Our Result

Convergence (to an optimum ball) with rate
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> in the number of faults.
»Recovers D-SGD for f = 0.
» Conjectured to be tight.

: @ new mixing criterion to analyze the non-linear mixing of
non-faulty nodes instead of the spectral gap.



Our Algorithm: MoNNA

Correct node i at learning iteration t:

» Local phase:

» Polyak’s (Mo)mentum for the local update:
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» Coordination phase:

> Broadcast 95?1 /2

» Nearest Neighbor Averaging (NNA):
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NNA at node i:
1. Filter out f vectors that are furthest

()
from 0t+1/2

2. Average the remaining vectors.



Experiments: MoNNA vs. Previous Works
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Abstract

Collaborative learning algorithms, such as dis-
tributed SGD (or D-SGD), are prone to faulty
machines that may deviate from their prescribed
algorithm because of software or hardware bugs,
poisoned data or malicious behaviors. While
many solutions have been proposed to enhance
the robustness of D-SGD to such machines, pre-
vious works either resort to strong assumptions
(trusted server, homogeneous data, specific noise
model) or impose a gradient computational cost
that is several orders of magnitude higher than
that of D-SGD. We present MONNA, a new al-
gorithm that (a) is provably robust under stan-
dard assumptions and (b) has a gradient com-
putation overhead that is linear in the fraction
of faulty machines, which is conjectured to be
tight. Essentially, MONNA uses Polyak’s mo-
mentum of local gradients for local updates and
nearest-neighbor averaging (NNA) for global mix-
ing, respectively. While MONNA is rather simple
to implement, its analysis has been more chal-
lenging and relies on two key elements that may
be of i interest. ifically, we in-
troduce the mixing criterion of (a, \)-reduction
to analyze the non-linear mixing of non-faulty
machines, and present a way to control the ten-
sion between the momentum and the model
drifts. We validate our theory by experiments
on image classification and make our code avail-
ableat https://github.com/LPD-EPFL/
robust-collaborative-learning.

1. Introduction

Collaborative learning allows multiple machines (or nodes),
each with a local dataset, to learn local models that offer
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a high accuracy on the union of their local datasets (Boyd
etal., 2011). This paradigm facilitates the training of com-
plex models over a large volume of data, while address-
ing concerns on data locality and ownership. The gen-
eral task of collaborative learning can be formulated as
follows. Consider a parameter space R?, a data space X
and a loss function g : R? x X — R. Given a parameter
6 € R%, adata point = € X incurs a loss of value ¢(0, z).
The system comprises n nodes. Each node ¢ samples data
from distribution D;, and thus has a local loss function
QW (0) :=Ep, [q(6, z)]. The goal for each node i is to
compute 6 minimizing the global average loss, i.e.,
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Collaborative learning with D-SGD. The most stan-
dard way of solving the optimization problem (1) is
through the use of the celebrated distributed SGD (D-SGD)
method (Tang et al., 2018; Koloskova et al., 2020). Each
node maintains a local parameter, approximating a solution
of the optimization problem (1), which is updated iteratively
in two phases. In the first phase, also called the local phase,
each node updates its current parameter partially using a
stochastic estimate of its local loss function’s gradient. In
the second phase, also called the coordination phase, the
nodes exchange their partially updated parameters with each
other over a network, and then each node replaces its cur-
rent parameter by the average of all the partially updated
parameters. While the former is essential for reducing the
local loss functions, the latter yields reduction in the global
average loss function. Alternately, as is the case in feder-
ated learning (Kairouz et al., 2021), the nodes may rely
on a trusted coordinator (called the server) to execute the
coordination phase involving the averaging operation.

Robustness issue. D-SGD is not very robust: a handful
of faulty nodes, deviating from their prescribed algorithm,
may prevent the remaining non-faulty (or correct) nodes
from computing a valid solution (Su & Vaidya, 2016). Such
behavior may result from software and hardware bugs, poi-
soned data, or malicious adversaries controlling part of the
network. We consider a setting where at most f (out of n)
nodes in the system are faulty and assume that these can



