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Problem: Saliency (importance of words for a task) in natural language isn’t
local and transformer stack language models capture a lot of “other”
information (language structure, syntax, etc)

Goal: Provide better explainability through more meaningful, clear,
decision-oriented representations from the information encoded in the hidden
layers of an encoder based transformer stack

Method: Assign explanatory power to tokens in an input sequence from layer
specific saliency scores calculated using information only downstream from
that layer

Algorithm: Computationally efficient projection of a layer’s saliency score
using a pre-trained language model head as the mapping function



Interpreting Saliency for Intermediate Layers Stl'

Let af be a n x K score matrix for layer [ indicating the contribution of each
element of hf (K features of output of i-th transformer block) to the final
classification decision ¢

Need to project scores for layers [ > 0 back into a space where elements of
projected vector correspond directly to locations of input sequence tokens
Language model head f“"(-) minimizes loss between output of transformer
block and its closest possible token space representation

arg mfin L(t, f(h))

where £(+) is a cross-entropy function, ¢ is the original input sequence, and
layer [ = L is the final transformer block in the stack

Conjecture: f'(-) is estimating the map between R¥ and T in general
because the pre-training tasks are performed over an enormous corpus



Toy Example for Decoding Layer OQutputs
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1. Input sequence “big dog” tokenized

into ¢! and t2 that lie on unit
hypersphere T

. Tokens are embedded into having K

continuous features (h} and h3)

. Series of [ transformer blocks applied

to the embedded input sequence to
produce hl1 and h12

4. Use f'™(.) to decode onto T
. Outputs (ff and 2) can be

interpreted as weighted combinations
of original tokens t' and t?
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Calculating Layer Saliency Scores Stl'

(Grad-CAM as example score metric) o ¢ are predictions for class ¢
e D;is T xn matrix: rows are columns

e of P, = f™(h;) corresponding to
¢ = Lpk | VE=1,....K o the i
ar = |-+, 8hk 1y =L tokens in the input sequence
K  sj are saliency scores aggregated
5§ = g(f)lal = ReLU( Z with function g(-) over all features

for layer [

o By using 151 to project af back onto 7, elements of s correspond directly to
contributions of each token in original input sequence to LM’s final decision

» s7 capture only information in the model that is downstream from a specific
layer [ (controls amount of model information used)
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Experiments: SST-2 Dataset
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Binary classification task - each sample is a sentence from a movie review labeled
as either Negative or Positive sentiment
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Experiments: SST-2 Dataset
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Experiments: AG News Dataset Stf'

Multiclass classification task - each sample is a sentence from a news article labeled
as belonging to World, Sports, Business, or Sci/Tech topics
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Experiments: AG News Dataset 5tl'
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Thanks!
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