Global Selection of
Contrastive Batches via
Optimization on Sample
Permutations

Vin Sachidananda!, Ziyi Yang?, Chenguang Zhu?

IStanford University and Two Sigma Ventures
ZKnowledge and Language Team, Microsoft Research

ICML 2023

(1) CONTRASTIVE LEARNING

- Contrastive Learning, used in many tasks for aligning embeddings in unimodal and
multimodal tasks
« Sentence Embeddings! In this work, improve SOTA
+ Code-Language Models? on both these models.

« Language-Image Models3

- All using same NT-Xent objective (scaled normalized cross entropy) to:
« Maximize inner product of similar data

« Minimize inner product of other data

1(SIimCSE: Gao 2021, DCPCSE: Jiang 2022) 2?(UniXcoder: Guo, 2022) 3(CLIP: Radford 2021, CoCa: Yu 2022)

(1) CONTRASTIVE LEARNING

Supervised contrastive learning, pair of

datasets X, Y of size N.
e X;i =Y
c Xy F Y ViE)

Example datasets include:
* pairs of similar sentences
« images and text captions

« code and their comments

def _parse_memory(s):

Parse a memory string in the format supported by Java (e.g. 1g, 200m) andn

return the value in MiB

>>> _parse_memory("256m")

>>> _parse_memory("2g")

N
w
()}

units =i{i g N1024 o m TN Ied 120tk 108 /51024)
if s[-1].lower() not in units:

raise ValueError("invalid format: " + s)
return int(float(s[:-1]) * units[s[-1].lower()])

*Image from CodeBERT (Feng, 2020)

(1) CONTRASTIVE LEARNING

- Batch B, of k samples, drawn without replacement, from both X, Y.
- Maximize f(X;)" f(¥;) and minimize f(X;)"f(Y;) Vj # i forj € B;.

- Use scaled cross entropy loss (only comparing in-batch inner products):

exp(f(X;)" f(Y5)T~1)
> e, exp(f(Xa) T f(Y;)T—1)

L; = —log

(1) GAP BETWEEN GLOBAL AND OBSERVED LOSSES

Can only observe Nk out of N* inner products during each training epoch. Which Nk
to use?

Global Loss Randomized Batching Optimized Permutation Goal: Minimize the
= = c e, gap between total
g ¢ A B and observed loss by

permuting over
rows of X, Y.

Batch 2
"

Batch 2 |7~
)

Loss (Increasing)

-
=
a

Batch 3

A L
Batch 3

~\

(1) GAP BETWEEN GLOBAL AND OBSERVED LOSSES

Training (observed) loss is poor approximation for global loss if large inner product
values of, x/ y;, not drawn in batches.

N N
rloba rain 1 - - 1
/s O 5 = ZIOgZexp(:clrij 1) —log Z exp(z] y;77 1) =

Increasing value of inner products in batches reduces L9%bal — [tr@in Qbserved in
prior works on hard negative mining.!

(Zhang et al., 2018; Xiong et al., 2021)

(11) BOUNDS ON THE GAP BETWEEN LOSSES

By using Log-Sum-Exp bounds gap can be minimized as either a Quadratic Assignment
Problem or Quadratic Bottleneck Assignment Problem.! (Both NP-Hard)

Theorem 4.1 (Formulation of QBAP for bound in Theorem Theorem 4.2 (Formulation of QAP for bound in Theorem
3.6). The following Quadratic Bottleneck Assignment Prob- 3.7). The following Quadratic Ass;gnment Problem mini-
lem, minimizes the upper bound provided in Theorem 3.6 mizes the upper bound in Theorem 3.7:

summed over X and Y :

max Tr(Ar(XYT + Y XT)xT).
.] T mellny

min max—A O nlnw".

TFGH_,\r l_]

(Koopmans and Beckman, 1957)

(IV) EFFICIENT APPROXIMATION TO THE QBAP (GCBS)

First, sparsify XY on large quantile (i.e. keep largest Nk inner products).

T ; ;

Xy, s = 1, Ti Y > @i F]
»J

0, else.

Relax QBAP to Matrix Bandwidth Minimization, Cuthill-Mckee heuristic returns
permutation r € Iy

time complexity: O(Nm log(m)) < 0(N?log(N)), m is max degree

space complexity: O(Nk)

implementation: 15 lines of PyTorch

Reorder data as mX and ¥, use a SequentialSampler to get batches during training.

(V) EXPERIMENTATION: CODESEARCH

+ Using GCBS, we achieve state of the art results on joint Code-Language Embeddings as
evaluated on code search task sets (CosQA, AdvTest, CSN) improving SOTA MRR (x100)

by ~2.2.
Model CosQA | AdvTest | Ruby JS Go Python Java PHP CSN Avg
RoBERTa 60.3 18.3 587 517 850 587 599 56.0 61.7
CodeBERT 65.7 27.2 679 620 882 672 676 628 69.3
GraphCodeBERT 68.4 35.2 703 644 897 692 69.1 64.9 71.3
SYNCoBERT - 38.3 722 677 913 724 723 678 74.0
PLBART 65.0 34.7 67.5 616 887 663 663 6l1.1 68.5
CodeT5-base 67.8 39.3 719 655 888 69.8 686 64.5 71.5
UniXcoder 70.1 413 | 740 684 915 720 726 67.6 74.4
-with GCBS ~ 71.1 (+1.0) | 43.3(+2.0) | 76.7 70.6 924 746 753 702 76.6(+2.2)

Table 1. The performance comparison of supervised models along with a comparison of the best performing model (UniXcoder) (Guo
et al., 2022) when using GCBS vs the standard Random Sampling. The reported score is Mean Reciprical Rank magnified by a factor of
100. GCBS improves previous best MRR when used with UniXcoder by 2.2 points achieving new state-of-the-art results (Row shaded

gray).

(V) EXPERIMENTATION: SENTENCE EMBEDDING

* Using GCBS, we Model STSI12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R | Avg
achieve state of the SBERT}qse 7097 | 76.53 | 73.19 | 79.09 | 7430 | 77.03 | 7291 74.89
art SBERT}qsc-flow 69.78 7727 | 74.35 82.01 7746 | 79.12 76.21 76.60
reSllltS on SBERT}qsc-Whitening 69.65 717.57 | 74.66 82.27 | 78.39 | 79.52 76.91 77.00
Sentence ConSERT-BERTy4¢ 74.07 83.93 | 77.05 83.66 | 78.76 81.36 76.77 79.37
Embeddings as SimCSE-BERTpgsc 7530 | 84.67 | 80.19 | 8540 | 8082 | 84.25 | 8039 | 81.57
1 d - with GCBS 75.81 85.30 | 81.12 | 86.58 81.68 84.80 80.04 82.19 (+0.62)
evaluated on STS. PromCSE-BERT}qc 75.96 | 84.99 | 80.44 | 86.83 | 8130 | 84.40 | 80.96 | 8213
- with GCBS 75.20 | 85.00 | 81.00 | 86.82 82.55 84.76 79.95 82.18 (+0.05)
.. SimCSE-RoBERTa, ¢ 76.53 85.21 80.95 ’ 86.03 82.57 85.83 80.50 ‘ 82.52
° Performance galn In - with GCBS 76.94 | 85.64 81.87 86.84 82.78 85.87 80.68 82.95 (+0.43)
PromCSE-RoBERTa, ¢ 77.51 86.15 81.59 ’ 86.92 83.81 86.35 80.49 ‘ 83.26
Spearman - with GCBS 1755 86.77 82.19 87.57 84.09 86.78 80.05 83.54 (+0.28)
COI'I'elatlon fOI‘ SimCSE-RoBERTa;4rge 77.46 87.27 82.36 | 86.66 83.93 86.70 81.95] 83.76
. - with GCBS 7890 | 88.39 84.18 88.32 84.85 87.65 81.27 84.79 (+1.03)
SimCSE and DCPCSE PromCSE-ROBERTajsrge 79.56 | 88.97 | 83.81 | 88.08 | 84.96 | 87.87 | 8243 | 85.10
Roberta_Large is - with GCBS 80.49 | 89.17 | 84.57 | 88.61 85.38 | 87.87 81.49 85.37 (+0.27)
+1-03% and +037% Table 2. The performance comparison of supervised models along with a comparison of the best performing models, SimCSE (Gao et al.,
res eCtivel 2021) and PromCSE (Yuxin Jiang & Wang, 2022), with and without GCBS. The reported score is Spearman correlation magnified by a
p y factor of 100. For RoOBERTa;arge backbone models, GCBS improves previous best Spearman correlation when used with SimCSE by

1.03 points and PromCSE by 0.27 points achieving new state-of-the-art results.

% Random Sampiing

LCO0% and Expected ¢ Train ay Epoch Start: Code Search Net (Ruby)
4338
. -9- v

e
« Empirically, GCBS reduces the gap between Soocn
the global and expected observed loss
during training by 40% for the Code Search
Net (Ruby) dataset with the UniXcoder =
2R 1913
model. 1 \3,\‘;“’ e |
‘ \. 1:‘, e 398 363 1.339
\.\ Ty — °
" . .\.'\' °
« Atthe 10™ epoch, the per sample observed e R
loss with GCBS is 15x larger than that of TN T e- 0 _ om0 om os ou
Random Sampling. T ==t — AT o —— %

« Atthe 10t epoch, the global loss per sample Figure 3. £5°"*! and Expected £7*'™ at the start of each epoch
is 30% less when using GCBS than that of for Random Sampling and GCBS on the Code Search Net (Ruby)
Random Sampling. dataset with the UniXcoder model.

(VI) DISCUSSION

 GCBS takes ~8.5 minutes to run across 275K contrastive pairs and is more efficient

than current global approaches for batch assignment (hard negative mining).

Code Search
Step Random | GCBS | Hard Negative (1)
Fwd+Bkwd Pass 381.45 381.45 | 762.9 (2x batches)
Add’l Fwd Pass - 118.51 118.51
Comp. k-NN - - 1.19
GCBS - 2.31 -
Total Time (s) 381.45 502.27 882.61

Table 5. Runtime in seconds per epoch for Random Sampling,
GCBS, and Hard Negative (1) for the Code Search Net (Ruby)
dataset N = 24,927, k = 64 with the UniXcoder model.

Sentence Embedding
Step Random | GCBS | Hard Negative (1)
Fwd+Bkwd Pass 442.26 442.26 | 884.52 (2x batches)
Add’l Fwd Pass - 370.31 370.31
Comp. k-NN - - 225.99
GCBS - 140.32 -
Total Time (s) 44226 | 965.03 1480.82

Table 6. Runtime in seconds per epoch for Random Sampling,
GCBS, and Hard Negative (1) for the SNLI+MNLI (entail-
ment+hard neg) dataset N = 275,602,k = 256 for sentence
embedding with the Bert-base-uncased model.

(VII) IMPLEMENTATION IN PYTORCH

* The Global Contrastive Batch Sampling method pseudocode in PyTorch is shown below.
Full code is available at https://github.com/vinayakl/GCBS

def compute_perm_bandwidth_min(X, Y, quantile_thresh = 0.999):
(1) Normalize representations.
X, Y = normalize (X), normalize(Y)

(2) Get value at quantile threshold on the inner product matrix.
quantile_thresh = torch.quantile(X @ Y.T, quantile_thresh)

(3) Get inner product matrix hard thresholded on quantile.
row, col, data = [], [], I[]

Get rows and columns of indices > estimated quantile value

ret = ((X @ Y.T).flatten() > quantile_thresh) .nonzero
row += ((ret - (ret % num_samples))/num_samples) .tolist ()

col += (ret % num_samples) .tolist ()
data += [1.0 for in range (len(ret))]

(4) Get perm which minimizes bandwidth of sparsified matrix with Cuthill-McKee.
permutation = list (cuthill_mckee (sparse_matrix((data, (row, col)),

shape= (num_samples, num_samples))))
return permutation

