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Clustering: A FUNDAMENTAL COMPUTATIONAL TASK

High-Level Goal. Grouping a set of objects so that 
ones in the same group are more “similar to” each 
other than to those in other groups (i.e., determined 
by a distance function).

Centroid-Based Clustering Formulation: pick 𝑘 
centers 𝐶 to minimize a given cost function

o 𝑘-center: min maximum distance of any point to centers

o 𝑘-median: min sum of distances of points to centers

o 𝑘-means: min sum of squared distances of points to centers

ℓ∞-objective

ℓ1-objective

ℓ2-objective

More generally, for 𝑝 ∈ 1,∞ , minimize
ℓ𝒑-objective = σ𝑣∈𝑃 𝑑 𝑣, 𝐶 𝑝 1/𝑝



Centroid-Based Clustering: FAIRNESS 

DATA SUMMARIZATION

Centers are picked as a summary of the whole dataset.

❑ Text Summarization (e.g., in legal cases)

❑ Search Results

Need to enforce the fairness as a requirement in 
the center selection process:

• New optimization (i.e., clustering) problem

• Percentage of U.S. CEOs who are women ≈ 30%



A notion of fair clustering proposed by [Kleindessner, Awasthi, Morgenstern, ICML‘19]: 
Input: 𝑘𝑖 where 𝑘 ≔ σ𝑖∈ ℓ 𝑘𝑖 ,
Goal: pick centers 𝐶 with minimum 𝑘-center cost s.t. ∀𝑖 ∈ ℓ , 𝐶 ∩ 𝑃𝑖 = 𝑘𝑖

Centroid-Based Clustering: FAIRNESS 

• Plausible fix for unfairness issue

• Significant loss in the clustering quality

❑ 𝑘-center cost with no constraint: 𝑚

❑ 𝑘-center cost with 𝑘blue = 𝑘red: 𝑀 ≫ 𝑚

RELAXED NOTION

❑ 𝑘-center cost with 𝑘red, 𝑘blue ∈ [
𝑘

3
,
2𝑘

3
]: 𝑚

𝟐𝒌

𝟑
 subgroups of blue points



FAIR RANGE CLUSTERING: Given a set of 𝑛 points in a metric space (𝑃, 𝑑):

• Each point belongs to one of given ℓ different groups (𝑃 = 𝑃1 ⊎ 𝑃2 ⊎ ⋯⊎ 𝑃ℓ)
• Set of ℓ intervals 𝛼1, 𝛽1 , ⋯ , [𝛼ℓ, 𝛽ℓ]

• Pick 𝑘 centers 𝐶 with minimum clustering cost s.t. ∀𝑖 ∈ ℓ , 𝛼𝑖 ≤ 𝐶 ∩ 𝑃𝑖 ≤ 𝛽𝑖

Clustering: FAIR RANGE FORMULATION

• Generalizes the notion of [Kleindessner et al., ICML‘19]: 𝛼𝑖 = 𝛽𝑖 = 𝑘𝑖

• Each group is at least minimally represented in the center set: 𝐶 ∩ 𝑃𝑖 ≥ 𝛼𝑖

• No group dominates the center set: 𝐶 ∩ 𝑃𝑖 ≤ 𝛽𝑖 



Fair range clustering proposed by [Nguyen, Nguyen, Jones’22]: 
❑ 𝑂(1)-approximation for 𝑘-center objective
❑ Not for other standard objectives such as 𝑘-median and 𝑘-means and 
more generally ℓ𝑝-cost: min

𝐶
σ𝑑 𝑣, 𝐶 𝑝 1/𝑝

Fair Range Clustering: BACKGROUND

Our Contribution:
𝑂(1)-approximation for fair range clustering with ℓ𝑝-cost where 𝑝 ∈ 1,∞

• LP-based approach 

• The LPs are solvable in time (𝑛𝑘)1.5 



High-Level Overview of Our Algorithm

Step 1. Find an optimal fractional solution of a natural LP relaxation
RELAXATION

Step 3. Round the fractional solution of the sparse instance
 Write new LP-relaxation for the sparse structured instance
 Find a half-integral optimal solution of the new LP
 Round the half-integral solution via an application of Max-Flow 

ROUNDING THE SPARSE SOLUTION

Step 2. Reduce the input instance to a sparse instance
 SPARSITY. The new instance is supported on 𝑂(𝑘) points
 STRUCTURED. It admits a “good” structured fractional solution (e.g., almost integral)

REDUCTION TO A SPARSE INSTANCE
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