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Regularization

▶ In the big data era, the success of machine learning and deep
learning methods typically have much more parameters than
the training samples.

Random forest Kernel method Neural network

▶ Optimizing such overparameterized models requires different
types of regularization.
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Explicit and implicit regularization
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Ridge ensembles

▶ Ridge estimator: Let Dn = {(xj, yj) ∈ Rp × R : j ∈ [n]} denote a
dataset. The ridge estimator fitted on subsampled dataset DI

with I ⊆ [n], |I| = k is defined as:

β̂λ
k (DI) = argmin

β∈Rp

1
k

∑
j∈I

(yj − x⊤j β)
2 + λ∥β∥2

2.

▶ Ensemble ridge estimator:

β̃λ
k,M(Dn; {Iℓ}M

ℓ=1) :=
1
M

∑
ℓ∈[M]

β̂λ
k (DIℓ),

with I1, . . . , IM ∼ Ik := {{i1, . . . , ik} : 1 ≤ i1 < . . . < ik ≤ n}. The
full-ensemble ridge estimator is defined by letting M →∞.
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Risk equivalence

Conditional prediction risk: The goal is to quantify and
estimate the prediction risk:

Rλ
k,M := E(x,y)[(y− x⊤β̃λ

k,M)2 | Dn, {Iℓ}M
ℓ=1], (1)

under proportional asymptotics where n, p, k→∞, p/n→ ϕ and
p/k→ ϕs. Here, ϕ and ϕs are the data and subsample aspect
ratios, respectively.

▶ As p/n→ ϕ and p/k→ ϕs, the
prediction risk in the full
ensemble (M =∞) converges:

Rλ
k,∞

a.s.−−→ Rλ
k,∞(ϕ, ϕs).

▶ For ϕ = 1, the risk profile as a
function of (λ, ϕs) is shown in
the figure in the log-log scale.
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▶ Risk equivalence (Theorem 2.3):

min
ϕs≥ϕ

R0
∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ridgeless

ensemble

= min
λ≥0

Rλ
∞(ϕ, ϕ)

︸ ︷︷ ︸
opt. ridge
predictor

= min
ϕs≥ϕ,
λ≥0

Rλ
∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ridge
ensemble

.
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▶ Implication: the implicit regularization provided by the
subsample ensemble (a larger ϕs, or a smaller k) amounts to
adding more explicit ridge regularization (a larger λ).
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Generalized cross-validation for ridge ensembles

▶ Beyond quantitative analysis, how can one pick (λ, ϕs) to
minimize the prediction risk?

▶ For ordinary ridge (M = 1 or k = n), the generalized
cross-validation (GCV) estimator is known to be consistent.

▶ For general M, the GCV estimator is defined as
▶ The GCV for full ensemble is defined by letting M tend to infinity.
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1
|I1:M |

∑
i∈I1:M

(yi − x⊤i β̃λ
k,M)2

(1− |I1:M|−1 tr(Sλ
k,M))2

,

where Sλ
k,M = 1

M

∑M
ℓ=1 XIℓ(X

⊤
IℓXIℓ/k + λIp)

+X⊤
Iℓ/k is the

smoothing matrix that represents the degree of freedom.
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Uniform consistency of GCV for full-ensemble ridge

▶ (Theorem 3.1, informal) For all λ ≥ 0, we have

max
k∈Kn
|gcvλk,∞ − Rλ

k,∞|
a.s.−−→ 0.

▶ This allows selecting the optimal ensemble and subsample
sizes in a data-dependent manner:
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Coupled with the risk equivalence result, it suffices to fix λ and
only tune the subsample size k or subsample aspect ratio ϕs.
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Inconsistency on finite ensembles

▶ (Proposition 3.3, informal) For ensemble size M = 2, ridge
penalty λ = 0, and any ϕ ∈ (0,∞),

|gcv0
k,2 − R0

k,2| ̸
p−→ 0.

▶ The bias scales as 1/M, which is negligible for large M:
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Summary

▶ This work [1] reveals the connections between the implicit
regularization induced by subsampling and explicit ridge
regularization for subsample ridge ensembles.

▶ We establish the uniform consistency of GCV for full ridge
ensembles.

▶ We show that GCV can be inconsistent even for ridge
ensembles when M = 2.

▶ Future directions: bias correction of GCV for finite M; extension
to other metrics [2]; extension to other base predictors.
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