Learning Deep Time-index Models for Time Series Forecasting

Gerald Woo

Authors: Gerald Woo¹², Chenghao Liu¹, Doyen Sahoo¹, Akshat Kumar², Steven Hoi¹

¹Salesforce Research Asia

²School of Computing and Information Systems, Singapore Management University

Approaches to Time Series Forecasting 2 different methods

Historical-value Models

Function of historical data

$$y_t = f(y_{t-1}, y_{t-2}, \ldots) + \varepsilon_t$$

Approaches to Time Series Forecasting 2 different methods

Historical-value Models

Function of historical data

$$y_t = f(y_{t-1}, y_{t-2}, \ldots) + \varepsilon_t$$

Time-index Models

Function of predictor variables

$$y_t = f(x_t) + \varepsilon_t$$

	Classical	Deep Learning		
Historical-value	ARIMAETS			
Time-index				

	Classical	Deep Learning
Historical-value	 ARIMA ETS 	 DeepAR N-BEATS Autoformer
Time-index		

	Classical	Deep Learning		
Historical-value	 ARIMA ETS 	 DeepAR N-BEATS Autoformer 		
Time-index	 Prophet Gaussian Processes			

	Classical	Deep Learning		
Historical-value	 ARIMA ETS 	 DeepAR N-BEATS Autoformer 		
Time-index	 Prophet Gaussian Processes	?		

A deep learning based approach

$$y_t = f(t) + \varepsilon_t$$

- where *f* is a neural network!
- Learn the appropriate function representation based on the time-index!

A deep learning based approach

$$y_t = f(t) + \varepsilon_t$$

- where *f* is a neural network!
- Learn the appropriate function representation based on the time-index!

Our proposed instantiation of deep time-index models

random fourier
features
$$oldsymbol{z}^{(0)} = \gamma(oldsymbol{ au}) = [\sin(2\pi oldsymbol{B}oldsymbol{ au}), \cos(2\pi oldsymbol{B}oldsymbol{ au})]^T$$

A deep learning based approach

$$y_t = f(t) + \varepsilon_t$$

- where *f* is a neural network!
- Learn the appropriate function representation based on the time-index!

Our proposed instantiation of deep time-index models

 $\begin{array}{l} \text{random fourier} \\ \text{features} \end{array} \quad \boldsymbol{z}^{(0)} = \gamma(\boldsymbol{\tau}) = [\sin(2\pi \boldsymbol{B}\boldsymbol{\tau}), \cos(2\pi \boldsymbol{B}\boldsymbol{\tau})]^T \\ \text{multi-layered} \\ \text{perceptron} \end{array} \quad \begin{cases} \boldsymbol{z}^{(k+1)} = \max(0, \boldsymbol{W}^{(k)} \boldsymbol{z}^{(k)} + \boldsymbol{b}^{(k)}), \quad k = 0, \dots, K-1 \\ f_{\theta}(\boldsymbol{\tau}) = \boldsymbol{W}^{(K)} \boldsymbol{z}^{(K)} + \boldsymbol{b}^{(K)} \end{cases}$

Pitfalls of deep time-index models

Pitfalls

- No inductive biases (such as linear trend, periodicity) unlike classical time-index models
- How to extrapolate across forecast horizon (generalize to future time steps)?

(a) Naive Deep Time-index Model

Pitfalls of deep time-index models

Pitfalls

- No inductive biases (such as linear trend, periodicity) unlike classical time-index models
- How to extrapolate across forecast horizon (generalize to future time steps)?

Meta-optimization framework

Solution: Meta-optimization formulation:

• Inner loop updates the local base parameters to the lookback window

Meta-optimization framework

Solution: Meta-optimization formulation:

- Inner loop updates the local base parameters to the lookback window
- Outer loop updates the **global meta parameters** over the **forecast horizon**

Meta-optimization framework

Solution: Meta-optimization formulation:

- Inner loop updates the local base parameters to the lookback window
- Outer loop updates the global meta parameters over the forecast horizon
- Global meta parameters encode the inductive bias, learning to enable extrapolation across the forecast horizon

Meta-optimization framework

Solution: Meta-optimization formulation:

- Inner loop updates the local base parameters to the lookback window
- Outer loop updates the global meta parameters over the forecast horizon
- Global meta parameters encode the inductive bias, learning to enable extrapolation across the forecast horizon

Meta-optimization framework

Each forecast is treated as an optimization problem! Solution: Meta-optimization formulation:

- Inner loop updates the local base parameters to the lookback window
- Outer loop updates the **global meta parameters** over the **forecast horizon**
- Global meta parameters encode the inductive bias, learning to enable extrapolation across the forecast horizon

Meta-optimization framework

Each forecast is treated as an optimization problem! \rightarrow Fast adaptation is needed! Solution: Meta-optimization formulation:

Solution. Meta optimization formulation.

- Inner loop updates the local base parameters to the lookback window
- Outer loop updates the **global meta parameters** over the **forecast horizon**
- Global meta parameters encode the inductive bias, learning to enable extrapolation across the forecast horizon

Fast and efficient meta-optimization

$$oldsymbol{z}^{(0)} = \gamma(oldsymbol{ au}) = [\sin(2\pi oldsymbol{B}oldsymbol{ au}), \cos(2\pi oldsymbol{B}oldsymbol{ au})]^T$$

 $oldsymbol{z}^{(k+1)} = \max(0, oldsymbol{W}^{(k)}oldsymbol{z}^{(k)} + oldsymbol{b}^{(k)}), \quad k = 0, \dots, K-1$
 $f_{ heta}(oldsymbol{ au}) = oldsymbol{W}^{(K)}oldsymbol{z}^{(K)} + oldsymbol{b}^{(K)}$

Fast and efficient meta-optimization

$$oldsymbol{z}^{(0)} = \gamma(oldsymbol{ au}) = [\sin(2\pioldsymbol{B}oldsymbol{ au}), \cos(2\pioldsymbol{B}oldsymbol{ au})]^T$$

 $oldsymbol{z}^{(k+1)} = \max(0, oldsymbol{W}^{(k)}oldsymbol{z}^{(k)} + oldsymbol{b}^{(k)}), \quad k = 0, \dots, K-1$
 $f_{ heta}(oldsymbol{ au}) = oldsymbol{W}^{(K)}oldsymbol{z}^{(K)} + oldsymbol{b}^{(K)}$

Apply inner loop updates to last linear layer only!

Base params $\theta = \{ \boldsymbol{W}^{(K)} \}$ Meta params $\phi = \{ \boldsymbol{W}^{(0)}, \boldsymbol{b}^{(0)}, \dots, \boldsymbol{W}^{(K-1)}, \boldsymbol{b}^{(K-1)}, \lambda \}$

Fast and efficient meta-optimization

$$oldsymbol{z}^{(0)} = \gamma(oldsymbol{ au}) = [\sin(2\pioldsymbol{B}oldsymbol{ au}), \cos(2\pioldsymbol{B}oldsymbol{ au})]^T$$

 $oldsymbol{z}^{(k+1)} = \max(0, oldsymbol{W}^{(k)}oldsymbol{z}^{(k)} + oldsymbol{b}^{(k)}), \quad k = 0, \dots, K-1$
 $f_{ heta}(oldsymbol{ au}) = oldsymbol{W}^{(K)}oldsymbol{z}^{(K)} + oldsymbol{b}^{(K)}$

Apply inner loop updates to last linear layer only!

Base params $\theta = \{ \boldsymbol{W}^{(K)} \}$ Meta params $\phi = \{ \boldsymbol{W}^{(0)}, \boldsymbol{b}^{(0)}, \dots, \boldsymbol{W}^{(K-1)}, \boldsymbol{b}^{(K-1)}, \lambda \}$

Closed-form solution to Ridge Regression!

DeepTime obtains state-of-the-art results!

	DeepTime	NSTrans	N-HiTS	ETSformer	FEDformer	Autoformer	Informer	LogTrans	GP
ETTm2	0.262	0.306	0.279	0.293	0.305	0.324	1.410	1.535	0.684
ECL	0.164	0.193	0.186	0.208	0.205	0.227	0.311	0.272	0.568
Exchange	0.351	0.461	0.390	0.410	0.478	0.613	1.550	1.402	0.468
Traffic	0.414	0.624	0.452	0.621	0.573	0.628	0.764	0.705	1.200
Weather	0.231	0.288	0.249	0.271	0.309	0.338	0.634	0.696	0.463
ILI	2.257	2.077	2.210	2.497	2.307	3.006	5.137	4.839	2.642
Avg Rank	1.42	3.67	2.38	3.83	4.17	6.17	8.17	8.04	7.17

MSE for each dataset averaged over 4 different horizons

DeepTime is highly efficient!

(a) Runtime Analysis

DeepTime is highly efficient!

(b) Memory Analysis

Conclusion

- Demonstrate that naive deep time-index models are unable to perform forecasting
- DeepTime: deep time-index models + meta-optimization
- DeepTime achieves
 - state-of-the-art results,
 - superior time efficiency over existing approaches,
 - superior memory efficiency over existing approaches

Conclusion

- Demonstrate that naive deep time-index models are unable to perform forecasting
- DeepTime: deep time-index models + meta-optimization
- DeepTime achieves
 - state-of-the-art results,
 - superior time efficiency over existing approaches,
 - superior memory efficiency over existing approaches

Limitations & Future Work

- Exogenous covariates
- Probabilistic forecasting

Paper can be found at: https://arxiv.org/abs/2207.06046 Code is available at: https://github.com/salesforce/DeepTime

