

Better Diffusion Models Further Improve Adversarial Training

Zekai Wang*¹, Tianyu Pang*², Chao Du², Min Lin², Weiwei Liu¹, Shuicheng Yan²

School of Computer Science, Wuhan University, China
Sea Al Lab, Singapore

Acknowledgment

Zekai Wang

Min Lin

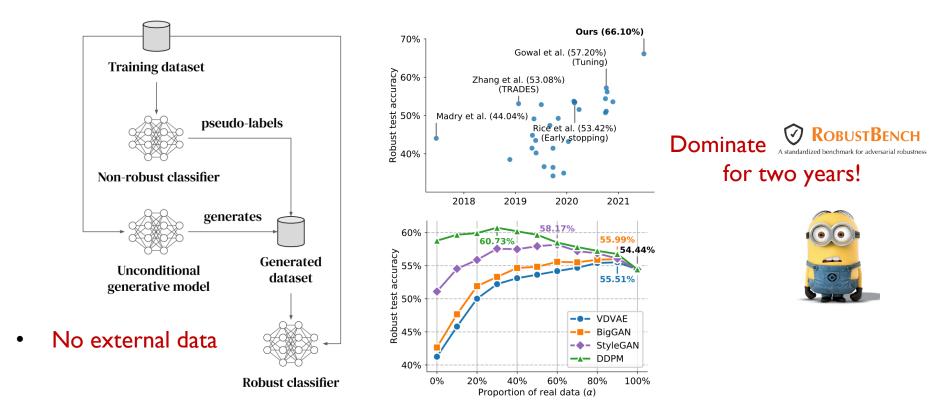
Tianyu Pang

Weiwei Liu

Chao Du

Shuicheng Yan

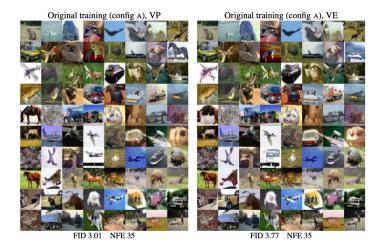
Diffusion Models for Trustworthy ML

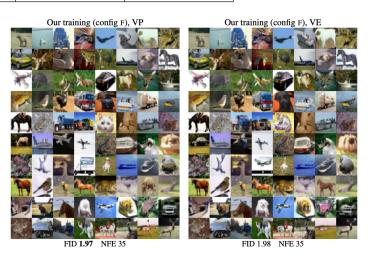


- [1] Rebuffi et al. Fixing Data Augmentation to Improve Adversarial Robustness. NeurIPS 2021
- [2] Gowal et al. Improving Robustness using Generated Data. NeurIPS 2021

Does Lower FID lead to Better Downstream Performance?

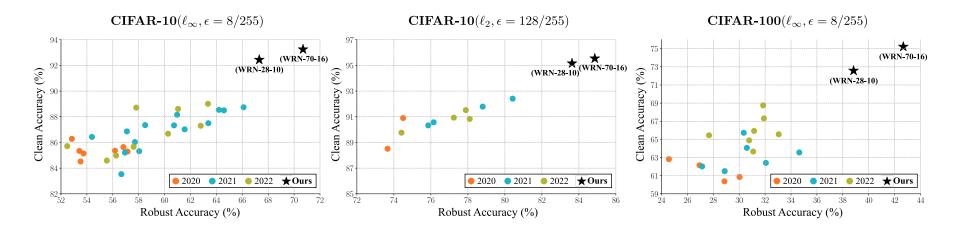
	CIFAR-10 [29] at 32×32				FFHQ [27] 64×64		AFHQv2 [7] 64×64	
	Condi	tional	Unconditional		Unconditional		Unconditional	
Training configuration	VP	VE	VP	VE	VP	VE	VP	VE
A Baseline [49] (*pre-trained)	2.48	3.11	3.01*	3.77*	3.39	25.95	2.58	18.52
B + Adjust hyperparameters	2.18	2.48	2.51	2.94	3.13	22.53	2.43	23.12
C + Redistribute capacity	2.08	2.52	2.31	2.83	2.78	41.62	2.54	15.04
D + Our preconditioning	2.09	2.64	2.29	3.10	2.94	3.39	2.79	3.81
E + Our loss function	1.88	1.86	2.05	1.99	2.60	2.81	2.29	2.28
F + Non-leaky augmentation	1.79	1.79	1.97	1.98	2.39	2.53	1.96	2.16
NFE	35	35	35	35	79	79	79	79





[3] Karras et al. Elucidating the Design Space of Diffusion-Based Generative Models. NeurIPS 2022

Yes! Better Diffusion Models are Indeed Better



New state-of-the-art!

A standardized benchmark for adversarial robustness

Yes! Better Diffusion Models are Indeed Better

Table 1. A brief summary comparison of test accuracy (%) between our models and existing Rank #1 models, with (✓) and without (✗) external datasets, as listed in RobustBench (Croce et al., 2021).

Dataset	Method	External	Clean	AA
CIEAD 10	Daml- #1	Х	88.74	66.11
CIFAR-10 $(\ell_{\infty}, \epsilon = 8/255)$	Rank #1	✓	92.23	66.58
(0∞, 0 0/200)	Ours	X	93.25	70.69
CIEAD 10	Damle #1	Х	92.41	80.42
CIFAR-10 $(\ell_2, \epsilon = 128/255)$	Rank #1	✓	95.74	82.32
$(c_2, c - 120/200)$	Ours	X	95.54	84.86
CIEAD 100	D - 1- 41	Х	63.56	34.64
CIFAR-100 $(\ell_{\infty}, \epsilon = 8/255)$	Rank #1	✓	69.15	36.88
$(\infty, \epsilon - 0/200)$	Ours	X	75.22	42.67

- Even beat previous SOTA that using external datasets
- No extra training time (only extra cost for generating data)

Yes! Better Diffusion Models are Indeed Better

Results on SVHN and Tiny-ImageNet

Dataset	Method	Generated	Ratio	Batch	Epoch	Clean	AA
	Gowal et al. (2021)	Х	X	512	400	92.87	56.83
SVHN	Gowal et al. (2021)	1 M	0.4	1024	800	94.15	60.90
$(\ell_{\infty}, \epsilon = 8/255)$	Rebuffi et al. (2021)	1 M	0.4	1024	800	94.39	61.09
•	Ours	1M	0.2	1024	800	95.19	61.85
	Ours	50M	0.2	2048	1600	<u>95.56</u>	<u>64.01</u>
	Gowal et al. (2021)	Х	Х	512	400	51.56	21.56
TinyImageNet	Ours	1 M	0.4	512	400	53.62	23.40
$(\ell_{\infty}, \epsilon = 8/255)$	Gowal et al. (2021)*	1M	0.3	1024	800	60.95	26.66
	Ours (ImageNet EDM)	1 M	0.2	512	400	<u>65.19</u>	<u>31.30</u>

Alleviate Overfitting

The model performs better with a longer training process

Generated	Epoch	Best epoch	Clean			PGD-40				AA		
			Early	Last	Diff	Early	Last	Diff	Early	Last	Diff	
×	400	86	84.41	82.18	-2.23	55.23	46.21	-9.02	54.57	44.89	-9.68	
	800	88	83.60	82.15	-1.45	53.86	45.75	-8.11	53.13	44.58	-8.55	
	400	370	91.27	91.45	+0.18	64.65	64.80	+0.15	63.69	63.84	+0.15	
2014	800	755	92.08	92.14	+0.06	66.61	66.72	+0.11	65.66	65.63	+0.03	
	1200	1154	92.43	92.32	-0.11	67.45	67.64	+0.19	66.31	66.60	+0.29	
20M	1600	1593	92.51	92.61	+0.10	68.05	67.98	-0.07	67.14	67.10	-0.04	
	2000	1978	92.41	92.55	+0.14	68.32	68.30	-0.02	67.22	67.17	-0.05	
	2400	2358	92.58	92.54	-0.04	68.43	68.39	-0.04	67.31	67.30	-0.01	

Alleviate Overfitting

Alleviate overfitting in adversarial training (Amount of Generated Data >500K)

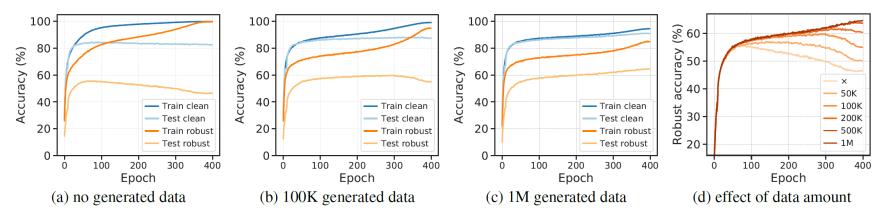


Figure 2. Clean and PGD robust accuracy of AT using (a) no generated data; (b) 100K generated data; (c) 1M generated data. (d) plots the PGD test robust accuracy of AT using different amounts of generated data.

THANKS