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The min-max optimization problem.

min f(z,y), max f(z,y)
rceX yey




What does it mean to solve the min-max problem?

e Obtain global Nash equilibrium
® Obtain local Nash equilibrium
® Obtain a stationary point

e Some other notions exist for sequential games.
e Global minimax points
e | ocal minimax points

e Stackelberg equilibrium
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What are the challenges?

GDA diverges on simple functions. Non-convex non-concave Algorithms cycle

GDA on f(x,y) = xy Opt|m|zat|on Optimistic Mirror Descent on f(x,y) = x2y+xy

Competitive Gradient Descent on f(xy) = x2y
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Recent non-convex hon-concave min-max optimization.

On the c titi
Impossibility of Gorgpe ; ve
o Global ragient
Optimistic Mirror Convergence in Optimization
Descent 18 Multi-Loss (?—%IVI Condition

MVI Condition Optimization 20

Restrictive Condition
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Competitive Generalized Extra
Gradient Descent Gradient Method
19 21

Local Condition Weak-MVI Condition

(Unconstrained)
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The local game.

At an iteration point CGO solves,

! or' or

argming,ex 0x' Vif + %(hTViyfﬁy +6y' V, f

1
arg mazs,cy 5yTVyf + %5yTV:,2ﬂ,f5m +6x 'V, f o Sy ' by
—_——— N——’

Taylor expansion of f around (z,y), éx terms ignored Regularization

‘Set a=n to obtain exact Taylor
expansion



CGO generalizes GDA and CGD

The global Nash
of the local
game Is,

GDA (a=0)




The
unconstrained
CGO
algorithm.

-Converges for arbitrary
deviations from convex-
concave condition for
small learning rates.

-Enhances local conditions
in discrete-time.

Repeat till
convergence

Initialize

Solve local

game

Obtain next iterate
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The continuous-time regime.

Description

PN N
(A =2

—B(I +a?V2, V2, ) (Vof +aV2 fV,f)

1171_%(5%3) =g =BT+ a2V§me§,yf) - (=Vyf + avszvwf)

Results

Continuous — time CGO converges to a stationary point exponentially

ith rate A = Smin(2) 20\ 2—|— Aey 2 yy—2a\ 2—I— Aue
Az Tz 1 2 Ay vy vy 1 2 Ao

)

3 W 3 2y 3y 2
where \y= max(\,, —M), A= max(Agzz,Ayy) and ¢ = fla — 20°A1—2a° Xy ).




The
constrained
CGO
algorithm.

Converges for a-MV|
functions

Repeat till
convergence

Initialize

Solve local

game

Project on
domain

Obtain next iterate

MADE WITH

beautiful.ai




MADE WITH

beautiful.ai




CGO In action,
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f(x.y)=x2y+xy (@-MVI with o>=2)
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The CGO algorithm (and it's analysis),

<

Solves a novel local game.

Produces a distinct algorithm from GDA in
continuous-time.

Allows arbitrary deviation from convex-concave
based on the cross-terms.

Obtains enhanced local convergence guarantees to
stationary points in unconstrained optimization

Explains convergence of CGD on bilinear functions

Obtains convergence guarantees on a=MVI| class of
functions for constrained optimization
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How to use this in your research?

Use to jointly train competitive reinforcement learning

Use for adversarial learning by appropriately computing the cross
terms

Use as the optimization algorithm for Generative Adversarial

Beyond the theoretical guarantees provided, setting different
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Code a.vailable
on github. Thank youl

AbhijeetiitmVyas/CompetitiveGradientOptim

Pytorch-version coming soon!




