### Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning

Yulai Zhao Zhuoran Yang Zhaoran Wang Jason Lee

# Backgrounds

- Multi-agent reinforcement learning (MARL) has demonstrated many empirical successes, e.g. strategic games (Go, StarCraft II...)
- Policy optimization methods are widely used in MARL (AlphaGo, LOLA...)





#### Main challenges in MARL (Zhang 2021)

- 1. non-stationarity: each action taken by one agent affects the total reward and the transition of state.
- 2. scalability: taking other agents into consideration, each individual agent would face the joint action space, whose dimension increases exponentially with the number of agents
- 3. function approximation: closely related to the scalability issue, the state space and joint action space are often immense in MARL

## Motivation

Despite the empirical successes, theoretical studies of policy optimization in MARL are very limited. Even for the cooperative setting where the agents share a common goal: maximizing the total reward function

In this paper, we aim to answer the following fundamental question:

Can we design a provably convergent multi-agent policy optimization algorithm in the cooperative setting with function approximation?

#### Contributions

- 1.We answer the above question affirmatively.
- 2.We propose a multi-agent PPO algorithm in which the local policy of each agent is updated sequentially in a similar fashion as vanilla PPO algorithm (Schulman et al., 2017).
- 3.We adopt the log-linear function approximation for the policies. We prove that multi-agent PPO converges at a sublinear  $O\left(\frac{N}{1-\gamma}\sqrt{\frac{\log(|A|)}{K}}\right)$  rate up to some statistical errors incurred in evaluating/improving policies.
- 4.Moreover, we propose an off-policy variant of the multi-agent PPO algorithm and introduce pessimism into policy evaluation.

# Problem Setup

- Fully-cooperative Markov Games
  - ➤ a tuple M = (N, S, A, P, r, γ): A party of participants N, a set of states S, a set of actions A, a transition probability P: S × A × A → Δ(S), a reward function r: S × A × A → [0, 1], a discounted factor γ ∈ [0, 1).

⇒ define policies as probability distributions over action space:  $\pi \in S \rightarrow \Delta(\mathcal{A})$ .

• Value function

$$V^{\pi}(s) = E_{a \sim \pi} \left[ \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}, b_{t}) | s_{0} = s \right]$$

# Multi-agent Notations

- We write index k on superscript when we refer to the specific k-th agent. When bold symbols are used without any superscript (e.g., a), they consider all agents. For simplicity, let (m: m') be shorthand for set: {i | m ≤ i ≤ m', i ∈ N}.
- Definition 3.1. Let *P* be a subset in *N* . The multi-agent action value function associated with agents in *P* is

$$Q_{\pi}^{P}(s, \boldsymbol{a}^{P}) = E_{\widetilde{\boldsymbol{a}} \sim \widetilde{\boldsymbol{\pi}}}[Q_{\pi}(s, \boldsymbol{a}^{P}, \widetilde{\boldsymbol{a}})]$$

here we use a tilde over symbols to refer to the complement agents, namely  $\tilde{a} = \{a^i | i \notin P, i \in N\}$ .

#### Multi-agent PPO for online setting

**Parametrization** For the *m*-th agent  $(m \in \mathcal{N})$ , its conditional policy depends on all prior ordered agents  $\mathbf{a}^{1:m-1}$ . Given a coefficient vector  $\theta^m \in \Theta$ , where  $\Theta = \{ \|\theta\| \le R | \theta \in \mathbb{R}^d \}$  is a convex, norm-constrained set. The probability of choosing action  $a^m$  under state s is

$$\pi_{\theta^m}(a^m|s, \mathbf{a}^{1:m-1}) = \frac{\exp\left(\phi^\top(s, \mathbf{a}^{1:m-1}, a^m)\theta^m\right)}{\sum\limits_{a^m \in \mathcal{A}} \exp\left(\phi^\top(s, \mathbf{a}^{1:m-1}, a^m)\theta^m\right)}$$
(2)

## Multi-agent PPO for online setting

**Policy Evaluation** In this step, we aim to examine the quality of the attained policy. Thereby, a Q-function estimator is required. We make the following assumption.

Assumption 4.3. Assume we can access an estimator of Q function that returns  $\hat{Q}$ . The returned  $\hat{Q}$  satisfies the following condition for all  $m \in \mathcal{N}$  at the k-th iteration

$$\left[ \mathbb{E}_{\sigma_k} \left( \hat{Q}_{\pi_{\theta_k}}^{1:m}(s, \mathbf{a}^{1:m-1}, a^m) - Q_{\pi_{\theta_k}}^{1:m}(s, \mathbf{a}^{1:m-1}, a^m) \right)^2 \right]^{1/2} \le \xi_k^m.$$

# Algorithm

Algorithm 1 Multi-Agent PPO **Input:** Markov game  $(\mathcal{N}, \mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma)$ , penalty parameter  $\beta$ , stepsize  $\eta$  for sub-problem, number of SGD iterations T, number of iterations K. **Output:** Uniformly sample k from  $0, 1, \dots K - 1$ , return  $\bar{\pi} = \pi_{\theta_k}$ . 1: Initialize  $\theta_0^m = 0$  for every  $m \in \mathcal{N}$ . 2: for  $k = 0, 1, \dots, K - 1$  do Set parameter  $\beta_k \leftarrow \beta \sqrt{K}$ 3: for  $m = 1, \cdots, N$  do 4: Sample  $\{s_t, \mathbf{a}_t^{1:m-1}, a_t^m\}_{t=0}^{T-1}$  from  $\sigma_k = \nu_k \pi_{\theta_k}$ . 5: Obtain  $\hat{Q}_{\boldsymbol{\pi}_{\theta_{k}}}^{1:m}(s, \mathbf{a}^{1:m-1}, a^{m})$  for each sample. 6: Feed samples into Algorithm 3, obtain  $\theta_{k+1}^m$ . 7: end for 8: 9: **end for** 

Algorithm 3 Policy Improvement Solver for MA-PPO

**Input:** MG  $(\mathcal{N}, \mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma)$ , iterations T, stepsize  $\eta$ , samples  $\{s_t, \mathbf{a}_t^{1:m-1}, a_t^m\}_{t=0}^{T-1}$ . **Output:** Policy update  $\theta$ .

1: Initialize 
$$\theta_0 = 0$$
.  
2: for  $t = 0, 1, \dots, T - 1$  do  
3: Let  $(s, \mathbf{a}^{1:m-1}, a) \leftarrow (s_t, \mathbf{a}^{1:m-1}_t, a_t^m)$ .  
4:  $\theta(t+\frac{1}{2}) \leftarrow \theta(t) - 2\eta \phi(s, \mathbf{a}^{1:m-1}, a) \left( (\theta(t) - \theta_k^m)^\top \phi(s, \mathbf{a}^{1:m-1}, a^m) - \beta_k^{-1} \hat{Q}_{\pi_k}^{1:m}(s, \mathbf{a}^{1:m-1}, a^m) \right)$ .  
5:  $\theta(t+1) \leftarrow \Pi_{\Theta} \theta(t+\frac{1}{2})$   
6: end for  
7: Calculate average:  $\bar{\theta} \leftarrow \frac{1}{T} \sum_{t=1}^{T} \theta_t$ .

#### Theoretical results

• Theorem 1 (informal): For this setting, after K iterations, we have  $J(\pi^*) - J(\bar{\pi})$  upper bounded by

$$\mathcal{O}\left(\frac{B\sqrt{N}}{1-\gamma}\sqrt{\frac{N\log|\mathcal{A}| + \sum_{m=1}^{N}\sum_{k=0}^{K-1}(\Delta_{k}^{m} + \delta_{k}^{m})}{K}}\right)$$

where  $\Delta_k^m = \sqrt{2}(\phi_k^m + \phi_k^{m-1}) \cdot \left(\epsilon_k^m + \frac{\xi_k^m}{\beta_k}\right)$  and  $\delta_k^m = 2\phi_k^{m-1}\epsilon_k^m$ . Here  $\epsilon_k^m$  is the statistical error of a PPO iteration: for agent  $m \in \mathcal{N}$ ,

$$\mathbb{E}_{\sigma_k} \left( (\theta_{k+1}^m - \theta_k^m)^\top \phi - \beta_k^{-1} \hat{Q}_{\boldsymbol{\pi}_{\theta_k}}^{1:m} \right)^2 \le (\epsilon_k^m)^2$$

# Pessimistic MA-PPO with Linear Function Approximation

- We perform pessimistic policy evaluation via regularization to reduce such overestimation aligning with experimental works.
- Theorem 1 (informal): For this setting, after K iterations, we have  $J(\pi^*) J(\bar{\pi})$  upper bounded by

$$\mathcal{O}\left(\frac{N}{(1-\gamma)^2}\sqrt{\frac{\log|\mathcal{A}|}{K}} + \frac{\mathcal{C}_{\mu}^{d_{\pi_*}}}{(1-\gamma)^2}\sqrt[3]{\frac{d\log\frac{nLR}{\delta}}{n}}\right)$$

Thank you and some more information





# paper

Yulai Zhao PhD student @ Princeton