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Introduction Setup

Motivation

Markovian dynamics: Real-life time-series data can often be modeled
reasonably with a Markovian assumption.

Multiple models, unlabelled trajectories: It’s more reasonable to
assume that there are multiple underlying models, and model labels are
often not recorded.

Examples:

Trajectories of what? Unrecorded model labels
Medical data Pre-existing health condition

or socio-economic status
Driving data Type of environment

Education data Type of learner
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Introduction Setup

Prior Work

Year Authors Mixtures of what?
2004 Vempala and Wang Gaussians
2020 Kong et al Linear models
2022 Chen and Poor Linear dynamical systems

2023, Us Kausik, Tan and Tewari Markov chains and MDPs

First setting handling control input!
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Introduction Setup

Problem Setup

We have a state and action set S,A and K different hidden labels. At
the start of each trajectory, we draw:

Hidden label k ∼ Categorical(f1, ..., fK )

Starting state according to the distribution pk on S

Generate the rest of the trajectory under the policy πk(a | s) interacting
with the transition structure P(k)(· | s, a).

In many applications, there are not too many “kinds of behaviors." That
is, K << S ,A.

What about Markov chains? Just set A = {∗}!
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Introduction Setup

Problem Formulation

To illustrate, let K = 5. Imagine that S and A are huge.

Traj 1 [k = 3 =⇒ P(3), π3, p3] s1, a1, s3, a3, s5, a5, s1, a1, s2, a2, . . .

Traj 2 [k = 1 =⇒ P(1), π1, p1] s2, a2, s4, a4, s2, a2, s1, a1, s5, a5, . . .

Traj 3 [k = 5 =⇒ P(5), π5, p5] s4, a4, s2, a2, s5, a5, s3, a3, s1, a1, . . .

. . .

Models and labels are unknown: We do not know the parameters
P(k), fk , pk , πk(· | s) of any model, or the model label kn for any trajectory n.

Goal: Cluster trajectories based on hidden model labels. This is essentially
unsupervised time-series clustering.
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Introduction Challenges

Main Challenges

Lack of methods with provable guarantees.

Unsupervised: Models and labels both unknown. Chicken and egg
problem! Expectation-Maximization (EM) lacks guarantees.

Short trajectories, naive model estimates are crude: Cluster using
naive estimates P̂n(· | s, a) from trajectories? Too crude if trajectory
length is much shorter than S .

Time series without additive i.i.d noise: Time series with martingale
noise presents complications beyond additive i.i.d. noise.
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Introduction Assumptions

Mixing Time Assumption

We essentially define the mixing time of the mixture here. This is more of a
notational definition, outside of the implicit hope that tmix << S ,A.

Assumption (Mixing Time)

The K Markov chains on S ×A induced by the behaviour policies πk , each
achieve mixing to a stationary distribution dk(s, a) with mixing time tmix ,k .
Define the overall mixing time of the mixture of MDPs to be

tmix := max
k

tmix ,k
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Introduction Assumptions

Model Separation Assumption

For each pair of models, there should be at least one "visible" (s, a) pair
that witnesses a difference between them. If you can’t "see a difference,"
you can’t hope to cluster!

Assumption (Model Separation)

There exist α,∆ so that for each pair k1, k2 of hidden labels, there exists a
state action pair (s, a) (possibly depending on k1, k2) so that
dk1(s, a), dk2(s, a) ≥ α and ∥P(k1)(· | s, a)− P(k2)(· | s, a)∥2 ≥ ∆.
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Introduction Main Result

Main Result

Theorem (Informal)

With high probability, we can recover all labels exactly with K 2S trajectories
of length K 3/2tmix , up to logarithmic terms and instance-dependent
constants.
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Introduction Main Result

Main Result

Theorem (Simplified)

There exist constants H0, N0 depending polynomially on
1
α ,

1
∆ , 1

mink fk
, log(1/δ), we can recover all labels exactly with n ≥ K 2SN0

trajectories of length K 3/2H0tmix log n with probability at least 1 − δ.
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Algorithm Overview

Algorithm Outline

The algorithm is modular and broadly has 3 steps.

1. Subspace Estimation

2. Clustering

3. Model Estimation and Classification
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Algorithm Overview

Algorithm Outline

Each trajectory n corresponds to a very crude model estimate P̂n(· | s, a).
See the paper for many important subtleties.

1. Subspace estimation: Aggregate across estimates P̂n to obtain
(VT

s,a)K×S , an estimate for the projector to spank P(k)(· | s, a).

2. Clustering: Similarity-based clustering.

dist1(m, n) = max
(s,a)∈Freqβ

∥VT
s,aP̂m(· | s, a)− VT

s,aP̂n(· | s, a)∥2
2
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Algorithm Overview

Intuition

Estimates P̂n(· | s, a) from trajectories are too crude when S is large.

Figure: Project crude estimates to a previously estimated subspace
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Algorithm Overview

Algorithm Outline

Each trajectory n gives a very crude model estimate P̂n(· | s, a). See the
paper for many important subtleties.

1. Subspace estimation: Aggregate across estimates P̂n to obtain
(VT

s,a)K×S , an estimate for the projector to ŝpankP(k)(· | s, a).

2. Clustering: Similarity-based clustering.

dist1(m, n) = max
(s,a)∈Freqβ

∥VT
s,aP̂m(· | s, a)− VT

s,aP̂n(· | s, a)∥2
2

3. Model Estimation and Classification: Estimate a model P(k)(· | s, a)
from each cluster. Use the models to classify any new trajectories,
refine using the EM algorithm.
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Algorithm Overview

Practical Implementation and Experiments

Determining K and Hyperparameters: We provide theory-informed
heuristics for determining K and the hyperparameters that we use.

Beyond just models: One can also use this algorithm with estimators
of objects other than models, like occupancy measures and rewards.

Subspace estimation is crucial: We demonstrate that using random
K -dimensional subspaces or no subspaces works much worse than our
method.

Evaluation: We match clusters to labels using the Hungarian
algorithm, and report the proportion of mislabelled trajectories.
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Algorithm Results

End-To-End Performance (Gridworld)

Figure: Gridworld, K = 2,N = 1000
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Algorithm Results

End-To-End Performance (Last.FM)

Figure: Last.FM data, K = 10,N = 750
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Future work

Future work

Computational improvements using matrix sketching.

Continuous state and action spaces.

Other controlled process, for example, linear dynamical system with
control input.
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