Test-Time Style Shifting: Handling Arbitrary Styles in Domain Generalization

Jungwuk Park*, Dong-Jun Han*, Soyeong Kim and Jaekyun Moon July 2023

School of Electrical Engineering

Background: Domain Generalization

• Goal: Perform well on the unseen domain

- → The target domain is unknown during training
- → The model should have generalization capability on the unseen domain
- → Solved via meta-learning, data augmentation, style augmentation ..

Background: Domain Generalization

Goal: Perform well on the unseen domain

- → The target domain is unknown during training
- → The model should have generalization capability on the unseen domain
- → Solved via meta-learning, data augmentation, style augmentation ...

Background: Domain Generalization via Feature Augmentation

t-SNE visualization of concatenated feature-level style statistics

 μ : channel-wise mean of the feature

 σ : channel-wise standard deviation of the feature

 $\mu(x)_{b,c} = \frac{1}{HW} \sum_{h=1}^{H} \sum_{w=1}^{W} x_{b,c,h,w} \qquad \sigma^2(x)_{b,c} = \frac{1}{HW} \sum_{h=1}^{H} \sum_{w=1}^{W} (x_{b,c,h,w} - \mu_{b,c}(x))^2$

→ Samples are clustered based on domain/style characteristics

Background: Domain Generalization via Feature Augmentation

MixStyle^[ICLR'21]

 \rightarrow Generate new styles while keeping the content via AdaIN^[ICCV'17]

AdaIN
$$(x, y) = \sigma(y) \frac{x - \mu(x)}{\sigma(x)} + \mu(y)$$

→ Improves generalization capability via style augmentation

Motivation: Issues in Style Augmentation based Ideas

• DG is still regarded as a challenging problem due to:

Large style gap between source and target domains

Cross-domain imbalance issue

 \rightarrow Lead to performance degradation

Motivation: Contributions

Contributions of our work

Large style gap between source and target domains -> Test-time style shifting at testing phase Cross-domain imbalance issue -> Style balancing strategy at training

ightarrow Can handle arbitrary domains while mitigating imbalance issue in DG

Proposed Idea: Style balancing at training

Process of style balancing for each class

✓ **Step 1:** Determining the number of samples to shift in each domain by class

Two samples from domain 1 should be shifted to domain 2 and 3.

Proposed Idea: Style balancing at training

Process of style balancing for each class

✓ Step 2: Sample selection

✤ Based on the distance measured between two samples (i.e., $d_{i,j} = \|\Phi(f(s_i)) - \Phi(f(s_j))\|$) for all sample pairs, choose one pair that has a minimum distance and select one sample closer to all other samples.

Proposed Idea: Style balancing at training

Process of style balancing for each class

✓ Step 3: Balancing

✤ Shift the selected sample to the other domain via EFDMix [CVPR'22].

→ Through this balancing process, all classes can explore more diverse styles.

Proposed Idea: Test-time style shifting at testing

Test-time style shifting

Key Idea: Shifting the styles of each target sample to the nearest source domain that the model is already familiar (well trained) with.

Test-Time Style Shifting

- Given a target sample t, new style statistic $\Phi(f(t))_{\rm new}$ of the sample are generated by

$$\begin{cases} \Phi_{S_{n'}} \text{ if } \frac{1}{N} \sum_{n=1}^{N} \|\Phi(f(t)) - \Phi_{S_n}\| > \alpha \Big(\frac{1}{N} \sum_{n=1}^{N} \|\Phi_S - \Phi_{S_n}\|\Big) \\ \Phi(f(t)) \text{ otherwise,} \end{cases}$$

• Where $n' = \operatorname{argmin}_n \|\Phi(f(t)) - \Phi_{S_n}\|$, Φ_{S_i} indicates the mean of feature statistics in i-th source domain, Φ_S is the mean of feature statistics over all source domains

Proposed Idea: Test-time style shifting at testing

Test-time style shifting

Key Idea: Shifting the styles of each target sample to the nearest source domain that the model is already familiar (well trained) with.

Test-Time Style Shifting

This enables the model to always make reliable predictions in well-trained domains at test time without any additional model update.

Proposed Idea: Style Balancing and Test-Time Style Shifting

Proposed method

Step 1: Style Balancing

→ Balance the number of samples for each class.

Step 2: DG schemes

→ Existing DG schemes such as MixStyle can be used.

- Step 3: Test-Time Style Shifting
 - \rightarrow Shift the style of each test sample to the nearest source domain.

Experimental Results

• Effect of style balancing (SB) and test-time style shifting (TS) on PACS dataset

Meth	ods	Art	Cartoon	Photo	Sketch	Avg.
L2A-	OT* (Zhou et al., 2020)	83.3	78.2	96.2	73.6	82.8
pAda	IN* (Nuriel et al., 2021)	81.74	76.91	96.29	75.13	82.51
SagN	[et* (Nam et al., 2021)	83.58	77.66	95.47	76.3	83.25
Tent [*]	* (Wang et al., 2020)	81.55	77.67	95.49	77.64	83.09
T3A [*]	* (Iwasawa & Matsuo, 2021)	80.4	75.2	94.7	76.5	81.7
SSG [*]	* (Xiao et al., 2022)	82.02	79.73	95.87	78.96	84.15
Basel	line - ResNet18	73.97	74.71	96.07	65.71	77.62
SB (I	Baseline)	80.55	77.16	96.39	71.68	81.44
TS (I	Baseline)	73.89	75.14	95.87	72.00	79.23
TSB	(Baseline)	80.60	77.58	96.35	74.37	82.22
MixS	Style (Zhou et al., 2021)	82.54	79.42	95.88	74.06	82.98
SB (-	+ MixStyle)	83.48	79.07	96.15	73.74	83.11
TS (-	- MixStyle)	82.59	79.99	95.88	78.66	84.28
TSB	(+ MixStyle)	83.62	80.07	96.15	78.66	84.63
DSU	(Li et al., 2022)	81.78	78.66	95.91	76.75	83.27
SB (-	+ DSU)	80.98	79.61	95.95	78.66	83.80
TS (-	- DSU)	81.12	80.31	95.82	79.19	84.11
TSB	(+ DSU)	80.73	80.69	95.83	79.47	84.18
EFD	Mix (Zhang et al., 2022)	83.12	79.76	96.43	75.08	83.60
SB (-	+ EFDMix)	83.98	79.75	96.47	75.12	83.83
TS (-	- EFDMix)	83.05	81.31	96.40	78.93	84.92
TSB	(+ EFDMix)	84.00	80.72	96.46	78.85	85.00

Experimental Results

- Results on imbalanced PACS dataset
 - Notably, in domain and class imbalance scenarios, our style balancing module effectively plays an important role to resolve the imbalance issues.

Methods	Reference		Cross-dom	ain data	imbalance	e	Cross-domain class imbalance					
11001000		Art	Cartoon	Photo	Sketch	Avg.	Art	Cartoon	Photo	Sketch	Avg.	
MixStyle	ICLR'21	71.73	73.80	90.60	66.48	75.65	39.91	54.08	56.45	44.82	48.82	
SB (+ MixStyle)	Ours	76.53	75.61	93.33	68.34	78.45	44.49	55.57	56.28	44.93	50.32	
TS (+ MixStyle)	Ours	72.04	74.01	90.60	75.12	77.94	39.98	54.01	56.45	44.44	48.74	
TSB (+ MixStyle)	Ours	76.97	76.62	93.29	75.88	<u>80.69</u>	44.50	55.84	56.28	46.68	<u>50.83</u>	
DSU	ICLR'22	75.76	75.26	91.90	72.45	78.84	29.61	45.24	46.90	39.37	40.28	
SB (+ DSU)	Ours	76.04	76.15	92.87	73.47	79.64	45.09	53.93	60.25	47.74	51.75	
TS (+ DSU)	Ours	75.49	76.69	91.92	76.36	80.12	29.78	44.54	46.90	36.65	39.47	
TSB (+ DSU)	Ours	75.93	77.39	92.85	75.90	<u>80.52</u>	45.03	54.42	60.24	49.20	<u>52.22</u>	
EFDMix	CVPR'22	75.33	75.67	90.59	71.07	78.16	44.68	54.87	58.15	44.64	50.59	
SB (+ EFDMix)	Ours	77.91	76.38	92.79	70.99	79.52	46.63	54.84	57.89	44.47	50.96	
TS (+ EFDMix)	Ours	75.39	75.92	90.56	74.97	79.21	44.56	55.05	58.15	45.96	50.93	
TSB (+ EFDMix)	Ours	77.90	76.54	92.71	76.37	<u>80.88</u>	46.03	55.29	57.87	49.99	<u>52.30</u>	

Experimental Results

- Results on imbalanced VLCS (left) and results in a single-domain generalization setup on PACS dataset (right).
 - Our TS significantly boosts up the performance of existing methods in a single-DG setup (right).

Methods	Caltech	LabelMe	Pascal	Sun	Avg.	Methods	Art	Cartoon	Photo	Sketch Avg.
MixStyle SB (+ MixStyle) TS (+ MixStyle)	68.87 69.97 73.51	53.32 53.87 53.20	55.12 55.51 55.15	39.09 38.51 38.98	54.10 54.47 55.21	MixStyle TS (+ MixStyle)	64.32 72.19	71.77 77.25	42.98 48.50	32.18 52.81 43.62 <u>60.39</u>
TSB (+ MixStyle)	73.27	53.78	55.02	38.58	55.16	DSU	64.85	74.53	39.48	36.20 53.77
DSU	63.07	54.13	56.01	39.90	53.28	TS (+ DSU)	70.99	73.95	51.18	49.03 <u>61.28</u>
SB (+ DSU) TS (+ DSU) TSB (+ DSU)	74.02 65.99 75.99	53.40 53.90 53.50	55.91 55.93 55.46	40.22 40.02 40.28	55.89 53.96 <u>56.31</u>	EFDMix TS (+ EFDMix)	66.56 73.87	73.93 76.79	44.74 53.04	36.36 55.40 49.41 63.28

- Results on person re-ID task using Market1501 and GRID datasets.
 - Our TSB can be applied to various tasks and bring performance improvements.

Mathada	Reference		Market -	→ GRID		$GRID \rightarrow Market$				
Methods		mAP	R 1	R5	R10	mAP	R1	R5	R10	
MixStyle (Zhou et al., 2021)	ICLR'21	35.30	26.67	44.53 42.93	53.07	5.25	16.40	30.05	37.05	
TSB (+ MixStyle)	Ours	36.30	28.27		55.47	5.70	17.75	31.90	39.65	
DSU (Li et al., 2022)	ICLR'22	38.57	30.40	46.40	53.07	4.45	14.90	27.65	34.60	
TSB (+ DSU)	Ours	40.10	30.67	48.00	58.13	5.25	16.70	31.60	38.85	
EFDMix (Zhang et al., 2022)	CVPR'22	36.33	27.47 26.93	45.87	52.27	6.07	19.27	33.70	41.30	
TSB (+ EFDMix)	Ours	36.67		46.67	55.57	6.53	20.23	35.37	43.13	

Conclusion

- We propose two effective strategies to handle the issues in domain generalization
- Test-time style shifting: handles any target domains with arbitrary styles.
- Style balancing: increases the potential of test-time style shifting while handling the DG-specific imbalance issues.
- We believe that our solution provides a new guideline for DG in practice with imbalance and domain shift issues.

Thank you

Any questions?

Contact:

Jungwuk Park Email: savertm@kaist.ac.kr