

Chaejeong Lee*, Jayoung Kim*, Noseong Park

Yonsei University

{chaejeong lee, jayoung.kim, noseong}@yonsei.ac.kr

Motivation

Challenges of modeling tabular data

- 1) Tabular data consists of **mixed data types**.
- 2) Pre/post-processing methods impact the performance of tabular data synthesis.

Continuous		Discrete		
X	Y	Circle	Color	
0.8	1.6	Circle1	Blue	
-0.5	2.7	Circle2	Gray	

Proposed Method

Co-evolving Conditional Diffusion Models

1) Forward Diffusion

- The pair (x₀^C, x₀^D) are simultaneously perturbed in each space conditioned on each other.
- 2) Reverse Diffusion
 - $p(\mathbf{x}_T^C) = \mathcal{N}(\mathbf{x}_T^C; \mathbf{0}, \mathbf{I}), \ p(\mathbf{x}_T^{D_i}) = \mathcal{C}(\mathbf{x}_T^{D_i}; 1/K_i)$
 - The noises are converted into fake samples while being conditioned on the denoised samples at the previous time step.

Proposed Method

Contrastive Learning

- Triplet loss 1)
 - Anchor: a real sample \mathbf{x}_0^C
 - **Positive sample**: a generated sample $\hat{\mathbf{x}}_{0}^{C+}$ conditioned on \mathbf{x}_0^D
 - **Negative sample**: a generated sample $\hat{\mathbf{x}}_0^{C-}$ with negative condition \mathbf{x}_0^{D-} .

 $L_{\rm CL}(A, P, N) = \sum_{i=0}^{S} \left[\max \left\{ d(A_i, P_i) - d(A_i, N_i) + m, 0 \right\} \right]$

Proposed Method

Contrastive Learning

- 2) How to define **negative conditions**
 - The negative samples are generated by corrupting the inter-correlation between the continuous and discrete variable sets.

Experiments

Experimental Results

L. Sam	pling qua	lity					2. Dive	rsity	3. Time	2
METHODS	BINARY		MULTI-CLASS		REGRESSION		METHODS	COVERAGE	METHODS	RUNTIME
	BINARY F1	AUROC	MACRO F1	AUROC	R^2	RMSE	MEDGAN	0.0155	MEDGAN	0.0200
MedGAN	0.1523	0.5464	0.1537	0.5015	-INF	INF	VEEGAN	0.0019	VEEGAN	0.0169
VEEGAN	0.2591	0.5520	0.1206	0.5082	-INF	INF	CTGAN	0.3834	CTGAN	0.1260
CTGAN	0.3432	0.6745	0.2355	0.5546	-INF	INF	TVAE	0.3903	TVAE	0.0140
TVAE	0.3188	0.6867	0.2361	0.5974	-INF	INF	TABLEGAN	0.5759	TABLEGAN	0.0224
TableGAN	0.4078	0.7480	0.2715	0.6072	-0.0704	1.0015	OCT-GAN	0 2547	OCT-GAN	0.6008
OCT-GAN	0.3814	0.7350	0.3314	0.6434	-0.0868	1.0210	DNODE	0.3841	DNODE	103 1440
RNODE	0.3208	0.6651	0.3692	0.7037	-0.3037	1.1270	RNODE	0.5641	RNODE	103.1449
STASY	0.4559	0.7961	0.6078	0.7997	-1.3200	1.2227	STASY	0.5771	STASY	4.0417
CoDi	0.4726	0.8106	0.6221	0.8026	0.4794	0.6477	CoDI	0.6931	CoDi	0.5187

• Compared to other models, CoDi can sample in reliable runtime with high quality and diversity.

Experiments

Contrastive Learning

Ablation study on the efficacy of **contrastive learning**. \bullet

DATASETS	CoDi W	/o CL	CoDi		
	F1 (R^2)	COVERAGE	F1 (R^2)	COVERAGE	
Bank Heart Seismic Stroke	0.527 ± 0.032 0.886 ± 0.043 0.210 ± 0.064 0.129 ± 0.036	0.699±0.003 0.879±0.017 0.380±0.016 0.651±0.020	$\begin{array}{l} \textbf{0.566 \pm 0.014} \\ 0.872 \pm 0.039 \\ \textbf{0.305 \pm 0.040} \\ \textbf{0.147 \pm 0.016} \end{array}$	$\begin{array}{c} 0.687 \pm 0.002 \\ \textbf{0.949} \pm \textbf{0.012} \\ 0.359 \pm 0.005 \\ \textbf{0.919} \pm \textbf{0.008} \end{array}$	
CMC Customer Faults Obesity	0.484 ± 0.024 0.350 ± 0.008 0.705 ± 0.047 0.912 ± 0.038	$\begin{array}{c} 0.932 \pm 0.011 \\ 0.789 \pm 0.019 \\ \textbf{0.272 \pm 0.016} \\ \textbf{0.777 \pm 0.018} \end{array}$	$\begin{array}{c} 0.503 \pm 0.008 \\ 0.352 \pm 0.015 \\ 0.715 \pm 0.046 \\ 0.919 \pm 0.034 \end{array}$	0.934±0.015 0.833±0.021 0.270±0.017 0.742±0.015	
Absent Drug Insurance	(-0.026±0.036 (0.748±0.074) c (0.531±0.308))0.801±0.009 0.813±0.013 0.218±0.028	(0.095±0.022) (0.768±0.049) (0.575±0.398))0.843±0.023)0.827±0.046)0.262±0.020	

Thank you

chaejeong_lee@yonsei.ac.kr https://github.com/ChaejeongLee/CoDi

