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Motivation

e Many real-world settings are inherently history-dependent
e Challenging credit assignment for long-term histories

e We introduce a Logistic DCMDPs:

o Inspired by Rescorla-Wagner model
o Account for long-term history dependence

o Allow for efficient credit assignment and exploration

e We provide theoretical regret guarantees and a practical algorithm
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Dynamic Contextual MDP (DCMDP)

e Defined by the tuple (X, S, A,r, P, H)
e DCMDP dynamics are history-dependent

o Agentinteracting with an environment.

o Generating a sequence of states, actions, and contexts.

e Performance is measured in terms of value and regret
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Special Cases of DCMDPs

e Contextual MDPs: context
remains fixed across transitions.
e Markov DCMDPs: context

transitions are Markov.

o Can be reduced to MDP MDP
e Logistic DCMDPs (next)

Markov DCMDP POMDP



Logistic DCMDPs

General class of DCMDPs where history dependence is structured via an

aggregation of state-action-context-dependent features.
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Logistic DCMDPs
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Strong Theoretical Results

e A general RL method for logistic DCMDPs with unknown features.

o Utilizes estimates of rewards, transitions and projected estimates of features.

o Incorporates optimism to account for uncertainty.
e We address computational complexity:

o  We develop a local confidence bound for every state-action-context triple.

o  We construct an optimistic planner using a novel threshold mechanism.

e We prove statistically efficient regret guarantees.
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DCZero

e |Inspired by MuZero, DCZero incorporates representation, transition,
and prediction networks for learning and acting.

e Unique to DCZero, an additional ensemble of networks estimates the
unknown features using cross-entropy.

e Optimistic value is trained using our thresholding technique.

e We demonstrate the efficiency of DCZero on a difficult movie

recommendation task with long history dependence.

Google Research



