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pNash equilibriums

pProtocol

Time-Varying Games

a stable set of decisions where no player has incentives to deviate

The goal of time-varying games is chasing the time-varying Nash equilibriums

At each round t = 1, 2, . . . , T :

- each player (i ∈ [N ]) submits xt,i ∈ Xi ⊆ Rd respectively

- simultaneously, environments reveal a group of time-varying utility func-

tions ut,i : X #→ R+ for each player, where X ! X1 × . . .× XN

- the i-th player suffers loss ut,i(xt) and receives vt,i(xt) ! ∇xt,i
ut,i(xt,i;xt,−i),

where xt ! (xt,1, . . . , xt,N )
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pA general class containing many games of interest

Monotone Games

Monotone games: 〈v(x)− v(y),x− y〉 ≥ 0

Zero-sum games
Example: rock-paper-scissors game

Time-varying zero-sum games: [Zhang et al., 2022]

Strongly monotone games

〈v(x)− v(y),x− y〉 ≥ µ‖x− y‖22

Example: Cournot competition

Time-varying strongly monotone games: this work

Zhang et al., No-Regret Learning in Time-Varying Zero-Sum Games, ICML 2022
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pPerformance Measure: tracking error

Measures and Results

measure the distance to Nash equilibriums

- Path length: PT !
∑T

t=2
‖x!

t − x
!
t−1‖

- Gradient variation: VT !
∑T

t=2
sup

x∈X ‖vt(x)− vt−1(x)‖2

- Gradient variance: WT !
∑T

t=1
sup

x∈X ‖vt(x)− v̄T (x)‖

pNon-Stationarity Measure

pResults

Duvocelle et al.. Multi-Agent Online Learning in Time-Varying Games, MOR 2021
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pExisting Method [Duvocelle et al., 2021]

pOur Method: Online Ensemble

Non-Smooth Games

t = 1 t = ∆ t = 2∆ … t = (K − 1)∆ t = T

base 1

base 𝑛
meta learner

base 𝑖

…

DIST-ERR !

T∑

t=1

‖xt − x
!
t ‖

2 ≤
T∑

t=1

〈vt(xt),xt − x
!
t 〉 ≤

N∑

i=1

T∑

t=1

〈vt,i(xt), xt,i − x
!
t,i〉

(a dynamic regret minimization problem)

Duvocelle et al.. Multi-Agent Online Learning in Time-Varying Games, MOR 2021

Algorithm: OGD as base algorithm with different step sizes, Hedge as meta algorithm

An initial improvement due to the refined non-stationarity handling.

Result: can achieve without knowing in advance 

…

Algorithm: single model with periodic restarts, can achieve  
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pA further improvement by exploiting problem structure 

Non-Smooth Games

Methods for non-stationary online learning with strongly convex losses can be used [Baby and Wang, 2022]

Proposition 1. The tracking error can be upper-bounded by

µ

T∑

t=1

‖xt − x
!
t ‖

2 ≤ 2
N∑

i=1

T∑

t=1

(!t,i(xt,i)− !t,i(x
!
t,i)),

where !t,i(x) ! 〈vt,i(xt), x〉+
µ
2
‖x− xt,i‖2 is a µ-strongly convex surrogate loss.

(strong convexity from strong monotonicity)

Baby and Wang, Optimal dynamic regret in proper online learning with strongly convex losses and beyond, AISTATS 2022

Õ
(
1 + T 1/3P

2/3
T

)
≤ O

(√
T (1 + PT )

)
≤ O

(√
T + T 2/3P

1/3
T

)
Result:

- Õ(1) recovers the best-known static bound

- still does not require PT as input

- T 1/3P
2/3
T improves T 2/3P

1/3
T

Advantages:
An orthogonal result of Õ(1+WT ) can
be found in the paper.
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pExploiting smoothness for faster rates

pDynamic Regret bounded by Variation in Utilities (DRVU) [Zhang et al., 2022]

Smooth Games

Smoothness: ‖vt(x)− vt(y)‖ ≤ L‖x− y‖

T∑

t=1

〈vt,i(xt), xt,i − x!
t,i〉 !

1 + PT,i

ηi
+ ηi(1 + VT ) + ηi

N∑

j=1

Sj −
1

ηi
Si

where Sj !
∑T

t=2
‖xt,j − xt−1,j‖2

If each player runs a single-layer algorithm:

Regret summation over all players brings cancellations and faster rates

Zhang et al., No-Regret Learning in Time-Varying Zero-Sum Games, ICML 2022
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Smooth Games

Idea I: online ensemble 
(two-layer structure)

Idea II: inject correction 
term to bias towards 
more stable learners
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Smooth Games

Idea I: online ensemble 
(two-layer structure)

Idea II: inject correction 
term to bias towards 
more stable learners

Injecting a correction term into feedback loss and optimism
!t,i,j ! 〈vt,i(xt), xt,i,j〉+ λ‖xt,i,j − xt−1,i,j‖

2,

mt,i,j ! 〈vt−1,i(xt−1), xt,i,j〉+ λ‖xt,i,j − xt−1,i,j‖
2.

Purpose: bias towards more stable base-learners to make 
the cancelation in the dynamic regret feasible Faster rates: fully independent of 𝑇

O
(

min{
√

(1 + VT + PT )(1 + PT ), 1 +WT }
)

Result:
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Experiments

- (a), (b), (c), (d): time-varying !2-regularized logistic regression

- (e): time-varying Cournot competition

- (f): time-varying zero-sum strongly convex-concave games
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pProblem: time-varying strongly monotone games

pAlgorithms: robust online algorithms for non-smooth and smooth games

pKey ingredients:

Ø Online ensemble framework (suitable meta/base learners, correction, etc.)

Ø Strong convexity extracted from strong monotonicity

pResults: best-known (fast-rate) tracking error guarantees for this problem

Summary

Thanks!


