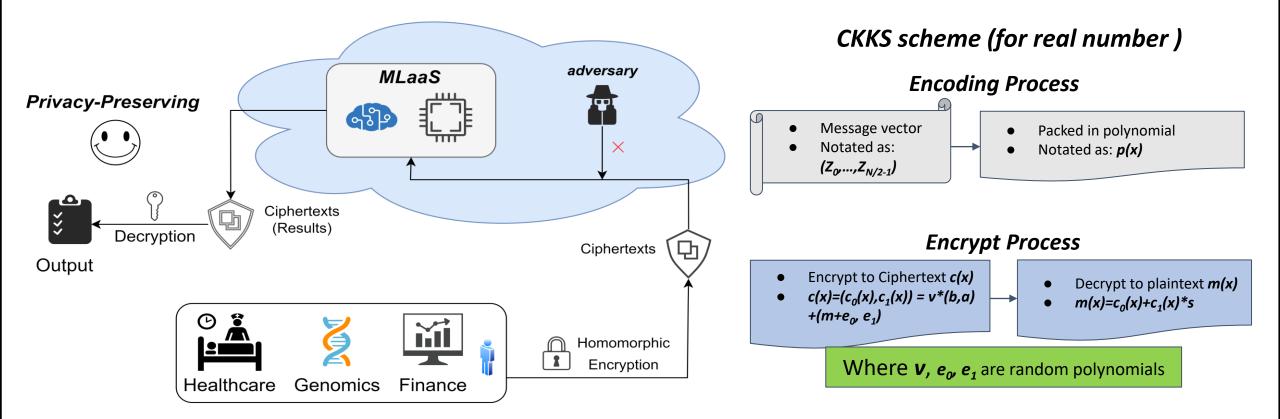


SpENCNN: Orchestrating Encoding and Sparsity for Fast Homomorphically Encrypted Neural Network Inference

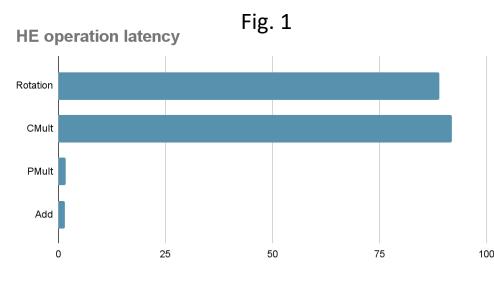
FLORIDA INTERNATIONAL ortheastern

University


ICON (

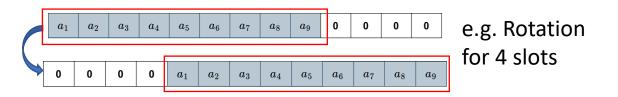
Ran Ran¹, Xinwei Luo¹, Wei Wang², Tao Liu³, Gang Quan⁴, Xiaolin Xu⁵, Caiwen Ding⁶, Wujie Wen¹ Lehigh University¹, Anonym, Inc², Lawrence Technological University³, Florida International University⁴, Northeastern University⁵, University of Connecticut⁶

To appear @ ICML 2023 Source code: https://github.com/ranran0523/SpENCNN

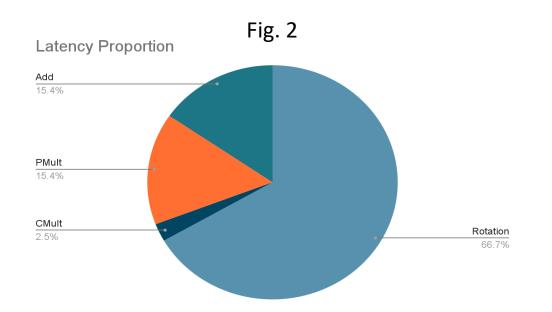

Homomorphic Encryption - PPML

Our Observations - Bottlenecks

Latency(ms)

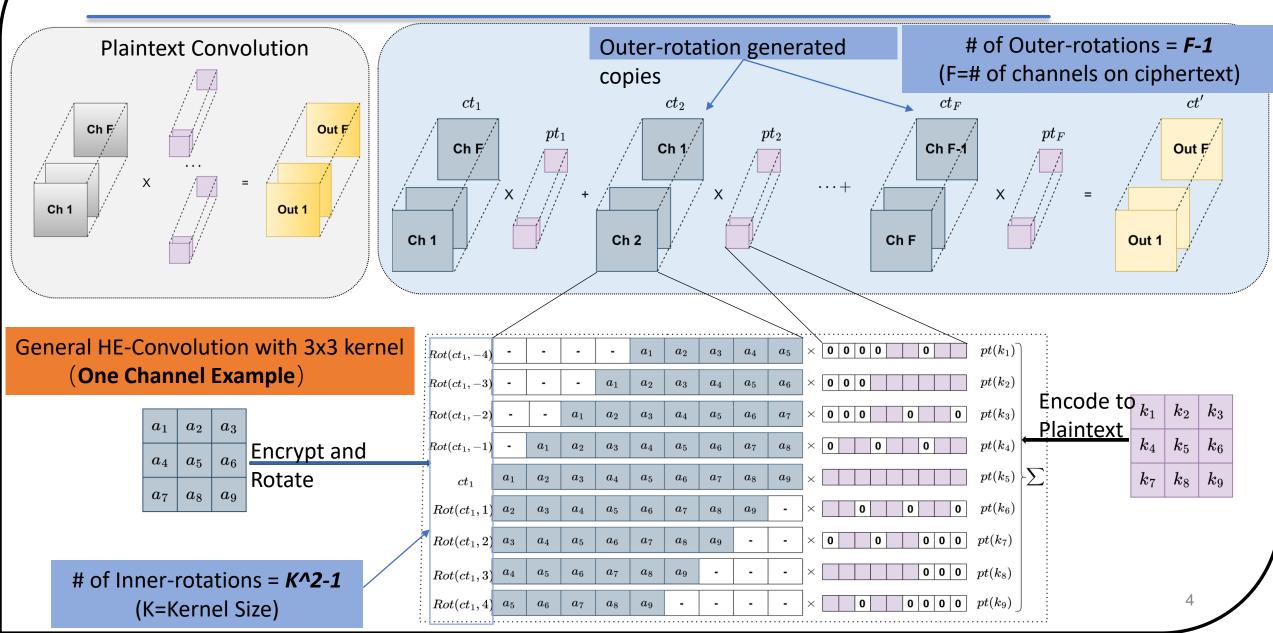

Supported HE operations in CKKS:

Rot(c(x),k)= (1,2,3,...,n) -> (k,k+1,...n,1,2,...,k-1)

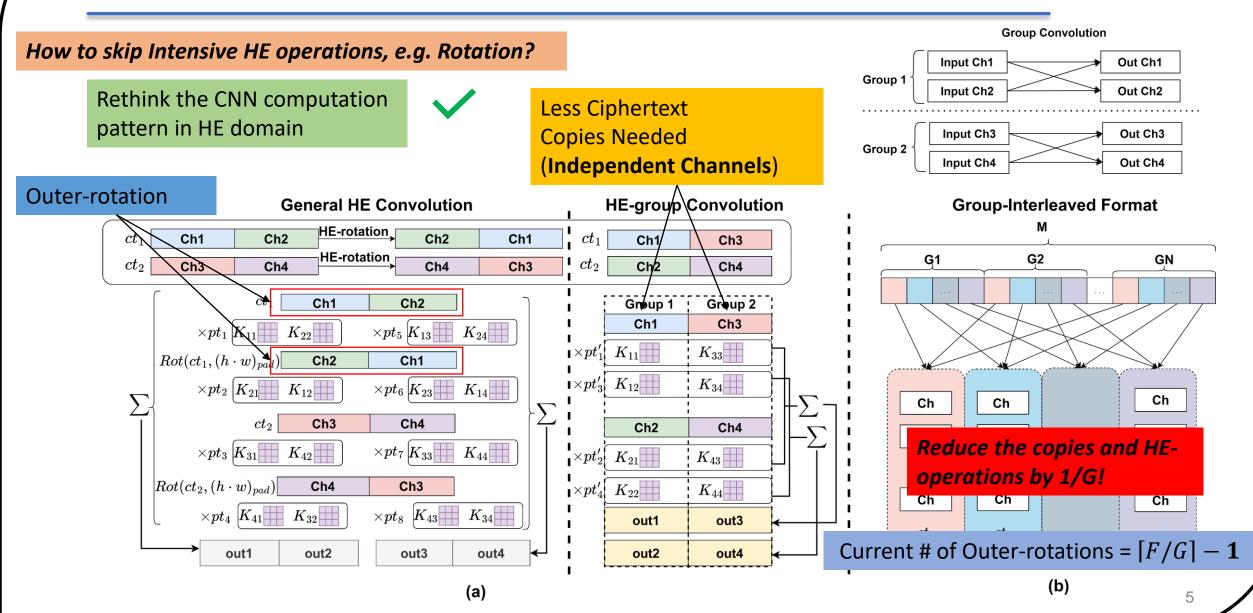

CMult(c(x), c'(x))=c(x) * c'(x) PMult(c(x), p(x))= c(x) * p(x) Add(c(x), c(x))= c(x) + c'(x)

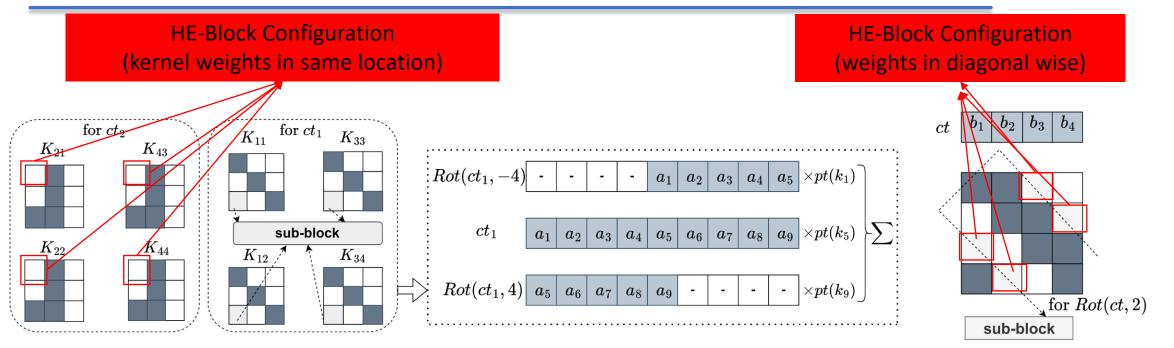
[1] Jiang, Xiaoqian, et al. "Secure outsourced matrix computation and application to neural networks." Proceedings of the 2018 ACM SIGSAC conference on computer and communications security. 2018.

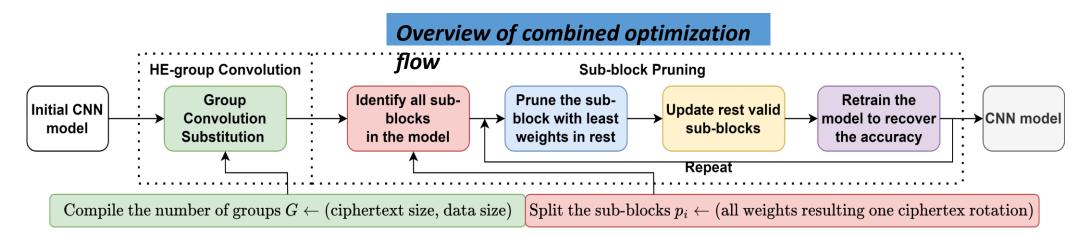
Main problem = Less Rotation !!!


Rotation and CMult contain Key-Switching (KS) operation which lead to a high latency than others [1].

One 64-channel Convolutional Layer Profiling Result ³


CNN Computation Pattern in HE


HE-Group Convolution


Sub-Block Pruning

(a) Weight sparsity in convolutional layers

(b) Weight sparsity in FC layers

Experiment Results

Table 3. Ablation study of HE-group convolution with the different number of convolution groups.

Model	Groups	HOC Left (%)		Accuracy (%)	Latency (s)	Speedup (×)	
		Rot	Others			- I I (-)	
LeNet-like	1-baseline	-	-	98.95	1.2658	-	
	2	51.52	52.91	98.95	0.6806	1.86	
	4	27.27	28.24	98.95	0.3807	3.32	
	8	27.27	16.47	98.67	0.3044	4.16	
	1-baseline	-	-	85.16	53.909	-	
VGG-5	4	87.53	84.08	84.53	46.539	1.16	
	8	85.45	81.42	84.06	45.311	1.19	
	16	85.45	80.10	82.23	45.053	1.20	
HEFNet	1-baseline	-	-	84.91	24.113	-	
	4	24.53	25.74	84.35	6.2491	3.86	
	8	11.95	13.36	83.67	3.2718	7.37	
	16	11.95	7.18	80.06	3.2718 2.3627	10.21	
ResNet-20	1-baseline	-	-	91.52	647	-	
	2	51.4	52.72	91.43	475	1.36	
	4	27.11	28.76	90.21	392	1.65	
	8	14.96	15.12	85.31	351	1.84	

Table 4. Ablation study of sub-block prune and comparison with other pruning methods.

Network	Groups	HOC Left (%)		Sparsity (%)	Latency (s)	Speedup (×)	
	Groups	Rot	Others	Sparsity (70)	Latency (S)	Speedup (X)	
LeNet-like	Dense-Baseline	-	-	0.00	1.2658	-	
	NS-prune	96.12	96.23	91.00	1.2190	1.04	
	S-prune (channel)	88.03	92.82	53.77	1.1202	1.13	
	Sub-block prune	35.21	34.07	63.83	0.4644	2.62	
VGG-5	Dense-Baseline	-	-	0.00	53.909	-	
	NS-prune	97.59	97.14	91.88	52.5280	1.03	
	S-prune (channel)	98.47	98.08	90.48	50.7178	1.06	
	Sub-block prune	15.89	16.11	89.87	8.7659	6.15	
HEFNet	Dense-Baseline	-	-	0.00	24.113	-	
	NS-prune	85.60	88.97	72.95	21.1660	1.14	
	S-prune (channel)	94.69	95.24	51.91	22.9240	1.05	
	Sub-block prune	41.88	38.11	63.90	9.3709	2.57	
ResNet-20	Dense-baseline	-	-	91.52	647	-	
	NS-prune	90.23	91.82	78.21	599	1.08	
	S-prune (channel)	96.21	96.84	53.12	628	1.03	
	Sub-block prune	52.31	50.12	56.40	475	1.36	

Table 5. Comparison with Hunter on model HOC left, sparsity, accuracy, latency, and speedup.

	Network	Method	HOC Left (%)		Sparsity	Accuracy	Latency	Speedup
			Rot	Others	(%)	(%)	(s)	(X)
		Baseline	-	-	0	98.95	1.2658	-
	LeNet-like	Hunter	40.95	39.91	59.99	98.95	0.5353	2.36
		Ours-4	8.54	9.88	62.62	98.95	0.1535	8.37
	VGG-5	Baseline	-	-	0	85.16	53.909	-
		Hunter	17.86	18.93	89.81	84.03	9,9916	5.40
		Ours-8	7.86	7.72	91.97	84.07	4.3830	12.11
	HEFNet	Baseline	-	-	0	84.91	24.113	-
		Hunter	48.27	42.20	57.82	83.63	10.855	2.22
		Ours-8	3.99	4.61	65.62	83.67	1.2520	19.26
•	ResNet-20	Baseline	-	-	0	91.52	647	-
		Hunter	51.12	52.39	48.12	90.20	461	1.40
		Ours-4	14.10	15.47	53.32	90.21	344	1.87

still Effective for with bootstrapping

Conclusion and Future Work

1.To conclude our work, we first combine the HE encoding format and the group convolution to reduce inference latency.

2. We rethink the sparsity problem in HE domain and structurally prunes weights by one sub-block for one high-latency inner-rotation operation

3. Future work could be extended to other applications and combines with other optimization methods like quantization to achieve a further reduction of latency.

Thanks!

Welcome to my poster for more discussions.