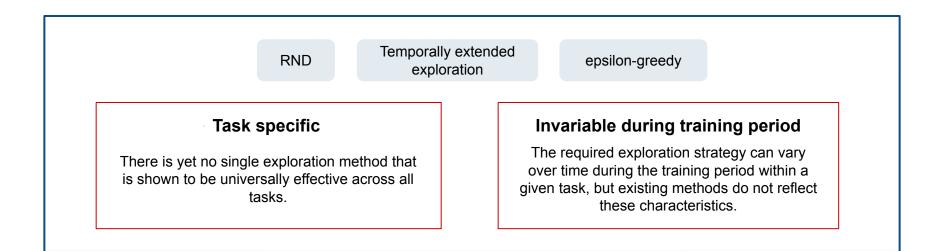
Learning to Integrate Exploration Strategies for Reinforcement Learning via an Option Framework (LESSON)

ICML 2023 Woojun Kim*, Jeonghye Kim*, Youngchul Sung (* denotes equal contribution)

Previous RL exploration method

Exploration refers to the method of efficiently exploring the environment within limited resources and time in order to gather crucial information for the agent's decision-making process.



LESSON - A Unified Framework for Multiple Exploration Strategies

LESSON is a unified framework that utilizes the **option-critic architecture**^[1] and an off-policy structure to **effectively integrate multiple exploration strategies** for adaptive exploration strategy selection during the learning phase.

Option-critic architecture

Options (Temporally-extended actions) : a form of action generalization that captures high-level behavior by combining multiple sub-actions.

Call-and-Return Option Execution Model : a hierarchical control framework that improves the efficiency and effectiveness of the agent's navigation by breaking down complex tasks into a series of options.

- **Call** : The agent **selects an option** that represents a sub-goal or desired behavior based on its current state.
- **Return** : The agent executes the selected option until its termination condition is met.

Method - Behavior Policy Construction via Option-Critic

 s_t

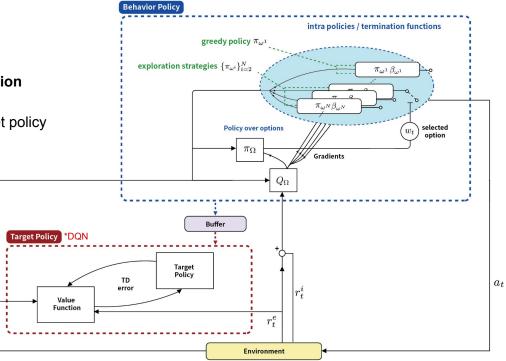
Key ideas of LESSON are

 to replace the behavior policy with an option-critic architecture whose (N : number of option)
intra-policies are defined by N-1 component exploration strategies and the greedy policy, and
to train both the option-critic architecture and the target policy with two different objectives based on the trajectories

generated by the option-critic architecture

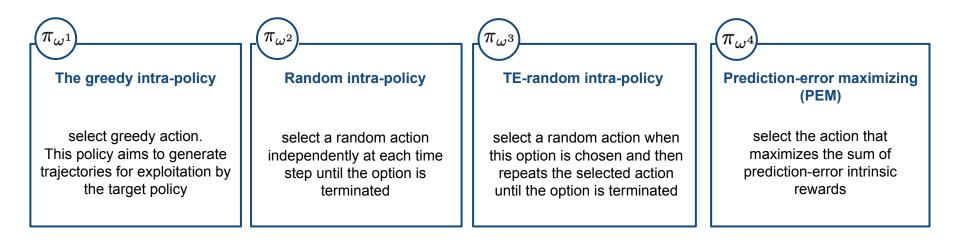
Important factor for exploration-exploitation trade-off in sampling

- Inclusion of the greedy policy
- Design of the objective function



Method - Behavior Policy Construction via Option-Critic

Design of intra-policies



$$(\pi_{\omega^1}) + (\pi_{\omega^2}) = \epsilon$$
-greedy $(\pi_{\omega^1}) + (\pi_{\omega^3}) = \epsilon$ z-greedy $(\pi_{\omega^1}) + (\pi_{\omega^4}) = RND$

Method - Learning Option-Critic

With the predefined intra-policies, we need to learn the **option selection policy** π_{Ω} and the **termination functions** $\{\beta_{\omega}\}$

Objective function for behavior policy :
$$J(\pi_{\Omega}, \{\beta_w\}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t (\underbrace{r_{t+1}^e}_{exploitation} + \alpha \underbrace{r_{t+1}^i}_{exploration})\right]$$

behavior policy should not only sample for exploration but also for exploitation for a trade-off between these two

Option-value function :
$$Q_{\Omega}(s_t,\omega_t) = \mathbb{E} \big[\sum_{l=t}^{\infty} \gamma^{l-t} (r_{l+1}^e + \alpha r_{t+1}^i) \big| s_t, \omega_t \big]$$

Learning Option-Value Function $\mathcal{L}(\theta_{\Omega}) = \mathbb{E}_{(s_{t},w_{t},r_{t}^{e}+\alpha r_{t}^{i},s_{t+1})\sim \mathcal{D}}\left[(y_{t}-Q_{\Omega}(s_{t},\omega_{t};\theta_{\Omega}))^{2}\right]$, where
 $y_{t} = r_{t}^{e} + \alpha r_{t}^{i} + \gamma \left(\left(1-\beta_{\omega_{t}}(s_{t+1})\right)Q_{\Omega}(s_{t+1},\omega_{t};\theta_{\Omega}^{-}) + \beta_{\omega_{t}}(s_{t+1})\max_{w'}Q_{\Omega}(s_{t+1},w';\theta_{\Omega}^{-})\right)$ Learning Termination Functions $\frac{\partial Q_{\Omega}}{\partial \theta_{\beta_{\omega}}} = -\mathbb{E}\left[\nabla_{\theta_{\beta_{\omega}}}\beta_{\omega}(s_{t+1};\theta_{\beta_{\omega}})(Q_{\Omega}(s_{t+1},\omega_{t}) - \max_{\omega}Q_{\Omega}(s_{t+1},\omega))\right]$

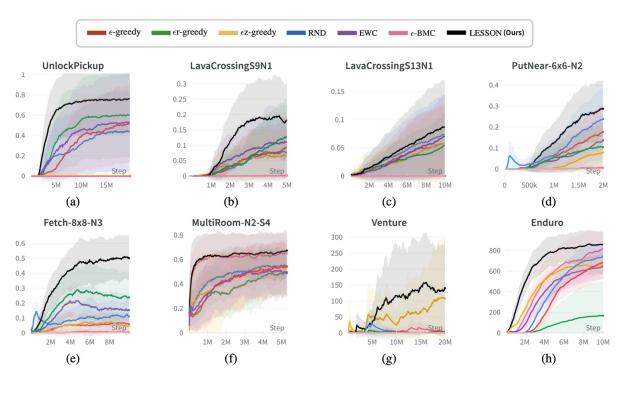
Experiments - Performance Comparison

Baselines

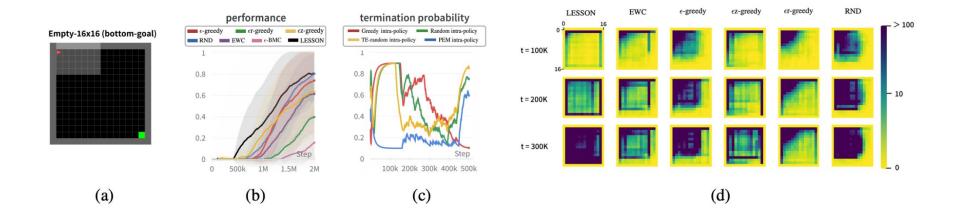
- ε-greedy (vanilla DQN)
- two simple DQN variants
 - ο εz-greedy, εr-greedy
- RND-based DQN
- Equal weight combining(EWC)
- ϵ -BMC, which learns ϵ

Environments

- 14 MiniGrid environments
- 4 Atari environments



Experiments - Exploration Behavior Analysis



- Adaptive exploration-exploitation trade-off achieved through adaptive selection of intra-policies over time. (c)
- LESSON combines visitation patterns of RND and cz-greedy to cover entire state space. (d)

The LESSON We Learned

 It is crucial to adaptively select exploration strategies according to environmental characteristics and the learning phase to achieve an efficient exploration-exploitation balance.

 In order to create a unified framework, we propose to incorporate the option-critic architecture with intra-policies consisting of a greedy policy and a set of exploration strategies, and meticulously designing the objective function.

