Arithmetic Sampling

Parallel Diverse Decoding for Large Language Models

Luke Vilnis*, Yury Zemlyanskiy*, Patrick Murray,

Alexandre Passos, Sumit Sanghai

Google Research

Motivation

- Sampling from large language models is computationally expensive, and samples are often **very similar** to one another.
- We want to make each sample count!
- Methods to avoid duplication or promote diversity, such as
 - Beam search
 - Gumbel-top-k [Kool et al. 2019]
 - UniqueRandomizer [Shi et al. 2020]
 - Determinantal beam search [Meister et al. 2021]
 - 0 ...

are difficult to parallelize.

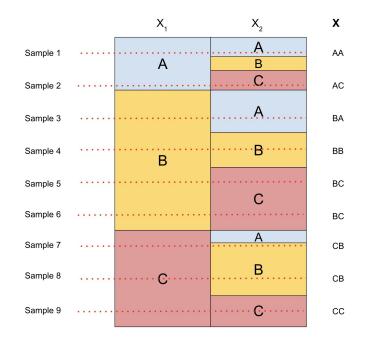
What might we want from a sampling algorithm?

Diverse Faithful Efficient Parallel

• Desiderata

- **Diverse** samples: sampled sentences should be diverse by some metric.
- **Faithful** to the underlying probabilistic model: if a sequence gets high probability under the language model, we should see it.
- Computationally **efficient:** no more complex than normal decoding
- **Parallel:** # of samples should not depend on platform HBM

Idea: arithmetic sampling


Faithful Efficient Parallel

• Arithmetic sampling

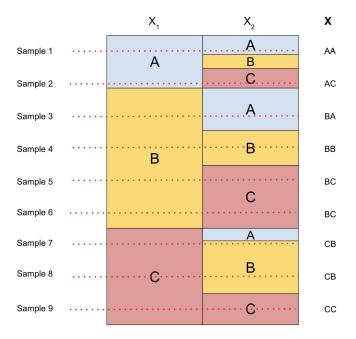
Diverse

- Reinterpret ancestral sampling as lazily constructing an arithmetic codebook
- Pick codes that are spread out in code space
- Replace IID Monte Carlo samples w/ dependent samples

Each prefix $(X_1 = v_{i_1}, ..., X_L = v_{i_L})$ falls in subinterval $(w_{i_1...i_L}, w_{i_1...i_L+1})$ $w_{i_1...i_L} = w_{i_1...i_{L-1}} + \sum_{j \leq i_L} P(X_1 = v_{i_1}, ..., X_{L-1} = v_{i_{L-1}}, X_L = v_j)$

Idea: arithmetic sampling

Diverse


Faithful

Efficient

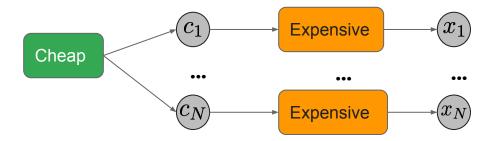
Parallel

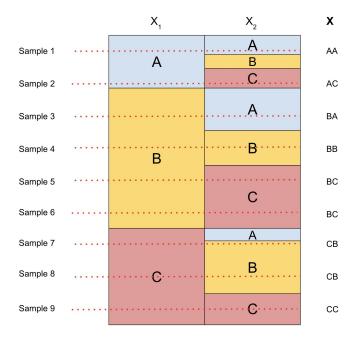
• Efficient sampling

 Samples are generated by an algorithm very similar to standard ancestral sampling

Idea: arithmetic sampling

Diverse


Faithful


Efficient

Parallel

- Parallel sampling
 - LLM sampling is embarrassingly parallel conditioned on a set of 1-d codes sampled evenly from [0,1]

$$\{x_i\} = f(\{c_i\})$$
 s.t. c_i are cheap

Idea: arithmetic sampling

Diverse Faithful Efficient Parallel

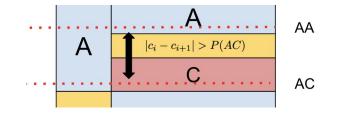
- Unbiased & Consistent
 - Because randomly shifted lattice points have marginal uniform distribution, estimators are **unbiased**
 - Because samples occur on a grid, estimators are **consistent**

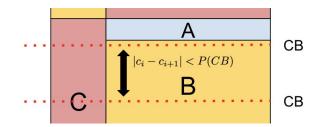
Idea: arithmetic sampling

Diverse

Faithful

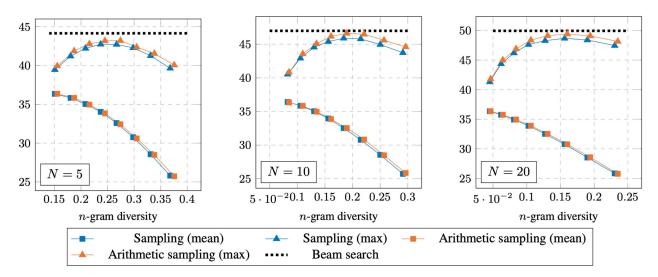
Parallel

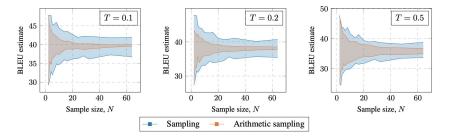

Arithmetic sampling does not sample any prefix "too much" •


Efficient

Proposition 5. Arithmetic sampling with size N will never sample the same prefix x more than n times if P(X = x) < xn/(N+1).

... or "too little"


Proposition 6. Arithmetic sampling with size N must always sample a prefix x at least n times if P(X = x) >(n+1)/(N+1).


Experiments

- WMT EnFr reranking
 - BLEU vs. n-gram diversity
 - Oracle: max BLEU within beam, closes most of the gap with beam search

Experiments

- Variance reduction
 - Sentence BLEU variance (WMT EnFr)

• Estimator variance (BLEU for WMT14 EnFr and WMT16 EnRo, ROUGE2 for CNN/DailyMail)

Conclusion

- Arithmetic sampling
 - Parallel, efficient, unbiased estimator
 - Diverse decoding
 - Implemented in T5X: <u>github.com/google-research/google-research/tree/master/arithmetic_sampling</u>

Conclusion

- Arithmetic sampling
 - Parallel, efficient, unbiased estimator
 - Diverse decoding
 - Implemented in T5X: <u>github.com/google-research/google-research/tree/master/arithmetic_sampling</u>

Thanks!