Adapting to game trees in zero－sum imperfect information games

Côme Fiegel，Pierre Ménard，Tadashi Kozuno，Rémi Munos，Vianney Perchet and Michal Valko

Two－player Zero－sum IIG with Perfect Recall
\mathcal{S} ：State space of size S ，Horizon H
\mathcal{X} ：Max－player＇s information set space of size X
\mathcal{A} ：Max－player＇s action space of size A
\mathcal{Y} ：Min－player＇s information set space of size Y
\mathcal{B} ：Min－player＇s action space of size B
r_{h}, p_{h} ：Reward／loss function and state－transition dynamics

Fig 1．An IIG with $H=2, \mathcal{A}=\left\{a_{1}, a_{2}\right\}$ ，and $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ ．Only max－ player＇s information sets are shown．

The Problem

Find an approximation through self－play of an optimal strategy for a zero－sum imperfect information game only using trajectory feedback．

Our Contributions

－Propose two computationally efficient algorithms，by combining implicit exploration and follow the regularized leader．
－If applied by both players，the first has an optimal high－ probability sample complexity of order $H(A X+B Y) / \varepsilon^{2}$ requiring the knowledge of the structure．
－The second has a sample complexity of order $H^{2}(A X+B Y) / \varepsilon^{2}$ without this knowledge，using an adaptive regularization．

Regret，Average Profile，and Nash Equilibrium

For a profile (μ, ν) ，the expected return（of the max－player）is defined by

$$
V^{\mu, v}=\mathbb{E}^{\mu, v}\left[\sum_{h=1}^{H} r_{h}\left(s_{h}, a_{h}, b_{h}\right)\right]
$$

When a profile (μ, v) satisfies the following，it is said to be an ε－NE：

$$
\max _{\mu^{\prime}} V^{\mu^{\prime}, v}-\min _{\nu} V^{\mu, v^{\prime}} \leq \varepsilon
$$

For a sequence of profiles $\left(\mu^{t}, v^{t}\right)$ ，the regret of the max－player is

$$
\mathfrak{R}_{\max }^{T}=\max _{\mu} \sum_{t=1}^{T}\left(V^{\mu, v^{t}}-V^{\mu^{t}, v^{t}}\right)
$$

The time－averaged profile $(\bar{\mu}, \bar{v})$ is an ε－NE with：

$$
\varepsilon=\frac{\mathfrak{R}_{\max }^{T}+\Re_{\min }^{T}}{T}
$$

Algorithm	Sample complexity	Structure－free
MCCFR（Farina et al．，2020；Bai et al．，2022）	$\widetilde{\mathcal{O}}\left(H^{4}(A X+B Y) / \varepsilon^{2}\right)$	\mathbf{x}
IXOMD（Kozuno et al．，2021）	$\widetilde{\mathcal{O}}\left(H^{2}\left(A X^{2}+B Y^{2}\right) / \varepsilon^{2}\right)$	\checkmark
Balanced OMD（Baie etal．，2022）	$\widetilde{\mathcal{O}}\left(H^{3}(A X+B Y) / \varepsilon^{2}\right)$	\mathbf{x}
Balanced FTRL（this paper）	$\widetilde{\mathcal{O}}\left(H(A X+B Y) / \varepsilon^{2}\right)$	\mathbf{x}
Adaptive FTRL（this paper）	$\widetilde{\mathcal{O}}\left(H^{2}(A X+B Y) / \varepsilon^{2}\right)$	$\mathbf{\checkmark}$
Lower bound（this paper）	$\widetilde{\mathcal{O}}\left(H(A \mathcal{X}+B \mathcal{Y}) / \varepsilon^{2}\right)$	

Sample complexity for various algorithms．Structure－free means that the algorithm does not need to know the structure of the information set spaces in advance．

Algorithm 1 Adaptive FTRL for the max－player
1：Input：
Base learning rate η and IX bias γ
Uniform policy μ^{0}
$\mu_{1: h}(x, a)$ denotes the combined probability for the
max－player of choosing actions that lead to (x, a)
2：For $t=1$ to T
For all h and $x_{h} \in \mathcal{X}_{h}$ ，compute learning rate $\eta_{h}^{t}\left(x_{h}\right) \leftarrow \min _{x_{h^{\prime}}^{\prime} \geq x_{h}} \eta /\left(1+\widetilde{P}_{h}^{t-1}\left(x_{h^{\prime}}^{\prime}\right)\right)$
For all $a_{h} \in \mathcal{A}\left(x_{h}\right)$ ，compute bias rate：
$\gamma_{h}^{t}\left(x_{h}, a_{h}\right) \leftarrow \gamma /\left(1+\widetilde{P}_{h}^{t-1}\left(x_{h}, a_{h}\right)\right)$

Compute update

$\mu^{t} \leftarrow \operatorname{argmin}_{\mu} \sum_{h}\left\langle\mu_{1: h}, \tilde{L}_{h}^{t-1}\right\rangle+\mathcal{D}_{\eta^{t}}\left(\mu, \mu^{0}\right)$
with $\mathcal{D}_{\eta}\left(\mu, \mu^{0}\right)=\sum_{x} \mu_{1: h}(x) \operatorname{KL}\left(\mu(\cdot \mid x), \mu^{1}(\cdot \mid x)\right) / \eta(x)$

$$
\text { For } h=1 \text { to } H:
$$

Observe information set x_{h}^{t}
Execute $a_{h}^{t} \sim \mu^{t}\left(. \mid x_{h}^{t}\right)$ and receive reward r_{h}^{t}

$$
\begin{aligned}
& \left.\widetilde{L}_{h}^{t} \leftarrow \widetilde{L}_{h}^{t-1}+\mathbb{I}_{\left\{x_{h}^{t_{n}, a_{h}^{t}}\right.}\right\}\left(1-r_{h}^{t}\right) /\left(\mu_{1: h}^{t}+\gamma_{h}^{t}\right) \\
& \left.\widetilde{P}_{h}^{t} \leftarrow \widetilde{P}_{h}^{t-1}+\mathbb{I}_{\left\{x_{h}^{t}, a_{h}^{t}\right\}}\right\}\left(\mu_{1: h}^{t}+\gamma_{h}^{t}\right)
\end{aligned}
$$

Return average policy $\bar{\mu}$

