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1. MOTIVATION
▶ Contrastive visual representation learning

(CL) highly depends on data augmentation

▶ Data augmentation is domain-specific and it
requires a priori hypothesis about the invari-
ants of the decision function

▶ Can we learn visual representations from other
prior knowledge, such as generative model’s
representation or auxiliary attributes ?

→ We propose a new contrastive loss, integrat-
ing prior knowledge through a kernel function
→ We derive theoretical guarantees on the
downstream classification task
→ We outperform previous unsupervised ap-
proaches using generative models as prior

2. NPC PROBLEM SOLVING
Problem setup. The general problem in con-
trastive learning is to learn a data representation
using an encoder f : X → Sd−1 that is pre-trained
with a set of n original samples (x̄i)i∈[1..n] ∈ X̄
and their augmented views xi ∼ A(·|x̄i).

Negative-Positive Coupling (NPC) issue in CL.
InfoNCE loss asympotically imposes 1) align-
ment between positives and 2) uniformity be-
tween negatives+positives→ by repelling and at-
tracting positives, InfoNCE cannot achieve both
perfect alignment and uniformity.
Decoupled Uniformity (DU) Loss. We propose
to solve the NPC issue in CL by optimizing a
loss relying only on centroids µx̄ = Ex∼A(·|x̄)f(x),
called Decoupled Uniformity (DU) loss:

Lde
unif (f) = logEp(x̄)p(x̄′)e

−||µx̄−µx̄′ ||2

Table 1: Linear evaluation accuracy of DU w/o prior
Dataset Network LInfoNCE LDC Lde

unif

CIFAR-10 ResNet18 82.18±0.30 84.87±0.27 85.05±0.37

CIFAR-100 ResNet18 55.11±0.20 58.27±0.34 58.41±0.05

ImageNet100 ResNet50 68.76 73.98 77.18

3. CONTRASTIVE LEARNING WITH PRIOR KNOWLEDGE

Step 1. Build an augmentation
graph GA for A:
▶ Nodes VA = X̄
▶ Edges connect (x̄, x̄′) if

they can be mapped to the
same augmented sample, i.e.
suppA(·|x̄) ∩ suppA(·|x̄′) ̸= ∅

Step 2. Build a kernel graph
GK for a given kernel K:
▶ Nodes VK = X̄
▶ Edges connect two images

(x̄, x̄′) if they are close in the
kernel space, i.e. dK(x̄, x̄′) ≤
2ϵ for K with constant norm.

Step 3. Estimate each centroid
µx̄ on G = GK ∪GA:

µ̂x̄ =
n∑

i=1

αi(x̄)f(xi)
ℓ2−→ µx̄

where αi(x̄) =
∑n

j=1[(Kn +

nλIn)
−1]ijK(x̄j , x̄) and Kn =

[K(x̄i, x̄j)]i,j∈[1..n].

Theorem 1 (Tight bounds on the supervised risk) We assume that G is class-wise connected and K is expressive
enough. Let (xi, x̄i)i∈[1..n]

iid∼ A(x, x̄). For any ϵ′-weak aligned encoder f :

L̂de
unif (f)−O

(
n−1/4

)
≤ Lsup(f) ≤ L̂de

unif (f) + 4D(2ϵ′ + ϵ) +O
(
n−1/4

)
where D is the maximal diameter of all class-connected sub-graphs and λmin(Kn) > 0 the minimal eign(Kn).

4. GENERATIVE MODELS IMPROVES CL REPRESENTATION
▶ We use generative model’s representation z(x̄) to set the kernel K(x̄i, x̄j) = Krbf (z(x̄i), z(x̄j))

Table 2: BigBiGAN improves CL
Model ImageNet100

SimCLR 68.76
BYOL 72.26
CMC 73.58
DCL 74.6

AlignUnif 76.3
DC 73.98

SwAV (w/o m-c) 73.5
BigBiGAN 72.0
DU (ours) 77.18

KGAN DU (ours) 78.02

Supervised 82.1±0.59

Table 3: Can we remove data augmentation from CL?

Model CIFAR-10 CIFAR-100

All w/o Color w/o Color+Crop All w/o Color w/o Color+Crop

SimCLR 83.06 65.00 24.47 55.11 37.63 6.62
BYOL 84.71 81.45 50.17 53.15 49.59 27.9

Barlow Twins 81.61 53.97 47.52 52.27 28.52 24.17
VAE 41.37 41.37 41.37 14.34 14.34 14.34

DCGAN 66.71 66.71 66.71 26.17 26.17 26.17
KGAN DU (ours) 85.85 82.0 69.19 58.42 54.17 35.98

▶ Small batch size n = 256 and f = ResNet in all experiments
▶ No data aug. used for generative models training
▶ Competitive results even when removing color distorsion

5. WEAK ATTRIBUTES HELP

Table 4: If weak attributes are accessible (e.g birds color
or size for CUB200), they can be leveraged as prior in
our framework to improve the representation.

Model CUB ImageNet100 UT-Zappos

SimCLR 17.48 65.30 84.08
BYOL 16.82 72.20 85.48

CosKernel CCLK 15.61 74.34 83.23
RBFKernel CCLK 30.49 77.24 84.65

CosKernel DU (ours) 27.77 79.02 85.56
RBFKernel DU (ours) 32.87 76.34 84.78

▶ Weak attributes z(x̄) plugged in RBF or Co-
sine Kernel K:
→ Bird’s attributes for CUB200
→ CLIP image’s encoder for ImageNet100
→ Brand sub-categories for UT-Zappos

6. CL FOR MEDICAL IMAGING
Table 5: ROC-AUC for classifying 5 pathologies on
CheXpert. GloRIA’s representation z(x̄) plugged in
RBF kernel as prior KGl.

Model At. Cardio. Consol. Edema Eff.

SimCLR 82.42 77.62 90.52 89.08 86.83
BYOL 83.04 81.54 90.98 90.18 85.99

MoCo-CXR 75.8 73.7 77.1 86.7 85.0

GLoRIA 86.70 86.39 90.41 90.58 91.82

CCLK 86.31 83.67 92.45 91.59 91.23
KGl DU (ours) 86.92 85.88 93.03 92.39 91.93

Supervised 81.6 79.7 90.5 86.8 89.9

CONCLUSION & FUTURE WORK
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▶ Theoretically-grounded CL loss integrating
prior knowledge and solving NPC problem

Next steps ?

▶ Integrate language models in CL
▶ Trainable kernel for centroid’s estimation
▶ Geometrical analysis of centroids’s distribu-

tion

https://github.com/Duplums/contrastive-decoupled-uniformity
https://proceedings.mlr.press/v202/dufumier23a/dufumier23a.pdf

