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Research Question

How many samples are needed to accurately solve the Inverse
Reinforcement Learning (IRL) problem with high probability?

Sample Complexity Lower Bound for IRL
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Inverse Reinforcement Learning (IRL) 3

EXPERT
(optimal policy πE)

AGENT
(exploration policy π)

ENVIRONMENT

Action ah

Action aE
h

State sh+1

State sh

State sh

At every stage h P JHK:
‚ Observe state sh
‚ Observe expert action
aEh „ πE

h p¨|shq
‚ Play exploratory action
ah „ πhp¨|shq

‚ Transition to next state
sh`1 „ php¨|sh, ahq

Traditional Goal of IRL (Arora and Doshi, 2021; Adams et al., 2022)

Find one feasible reward function r˚ that makes the expert’s policy πE optimal, i.e.,

πE P arg max
π

V πp¨; r˚q
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Feasible Reward Set 4

Ambiguity problem (Ng and Russell, 2000)

Study the full set of feasible rewards r˚ Ñ Feasible Reward Set (Metelli et al., 2021)

Find all feasible reward functions R that make the expert’s policy πE optimal, i.e.,

R :“

"

all rewards r˚ : πE P arg max
π

V πp¨; r˚q

*

R defined through linear constraints

If p and πE are known, check if pr is feasible takes OpHS2Aq
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Estimating the Feasible Reward Set 5

Transition model p and expert’s policy πE unknown

Estimate pp and pπE with samples inducing pR
Hausdorff distance between R (true) and pR (estimated)
feasible reward sets

Hd

´

R, pR
¯

“ max

#

sup
rPR

inf
prP pR

dpr, prq, sup
prP pR

inf
rPR

dpr, prq,

+

where dpr, prq “ max
s,a,h

|rhps, aq ´ prhps, aq|
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Sample Complexity 6

An algorithm A that outputs pRτ after τ calls to the environment is pε, δq-PAC if

P
´

Hd

´

R, pRτ

¯

ą ε
¯

ď δ

τ “ sample complexity

Sample complexity lower bound

τ ě poly

ˆ

S,A,H,
1

ε
, log

ˆ

1

δ

˙˙
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Main Result: Lower Bound 7

Theorem

For any pε, δq-PAC algorithm A, with ε and δ sufficiently small, there exists an IRL problem,
with S, A and H sufficiently large, such that the expected sample complexity is lower
bounded by:

if the transition model p is time-inhomogeneous (i.e., ph ‰ ph`1):

E rτ s ě Ω

ˆ

H3SA

ε2

ˆ

log

ˆ

1

δ

˙

` S

˙˙

;

if the transition model p is time-homogeneous (i.e., ph “ ph`1):

E rτ s ě Ω

ˆ

H2SA

ε2

ˆ

log

ˆ

1

δ

˙

` S

˙˙

.
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Main Result: Lower Bound
Comparison when p time-homogeneous

8

Inverse Reinforcement Learning (IRL, ours)

Ω

ˆ

H2SA

ε2

ˆ

log

ˆ

1

δ

˙

` S

˙˙

Reinforcement Learning (RL, Domingues et al., 2021) (tight)

Ω

ˆ

H2SA

ε2
log

ˆ

1

δ

˙˙

IRL harder than RL

Reward-Free Exploration (RFE, Jin et al., 2020; Dann and Brunskill, 2015) (tight)

Ω

ˆ

H2SA

ε2

ˆ

log

ˆ

1

δ

˙

` S

˙˙

IRL as hard as RFE
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Proof Sketch 9

Two regimes of δ

Ñ Small-δ regime

Expert’s policy πEpsq “ a0

Hard to identify which action
behaves like a˚

Construct ΘpAq hard instances

Technical tool: Bretagnolle-Huber
inequality (Lattimore and Szepesvári,
2020)

Ω

ˆ

AH2

ε2
log

ˆ

1

δ

˙˙

s˚

s´

s`

a˚

‰ a˚

1{2´ε1

1{2

1{2`ε1

1{2

1

1
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Proof Sketch 9

Two regimes of δ

Ñ Large-δ regime

Expert’s policy πEpsq “ a0

Hard to distinguish all actions aj

Construct Θp2Sq hard instances via a
packing argument based on
Hamming coding

Technical tool: Fano’s
inequality (Gerchinovitz et al., 2020)

Ω

ˆ

SAH2

ε2

˙

s˚

sS

...

s1

s2

a0

aj ‰ a0

1{2

1{2

1{2

p1`ε1vSq{S

p1`ε1v1q{S

p1`ε1v2q{S

1

1

1
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What it Missing in this Talk? 10

Lipschitz properties of the feasible reward set R
‚ Impossibility results for learning strict subsets of R (e.g., state-only rewards)

Uniform sampling algorithm nearly matches the lower bound

Relation with different dissimilarity index between rewards
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Thank You

for Your

Attention!

Contacts: albertomaria.metelli@polimi.it

Link: https://icml.cc/virtual/2023/poster/24193

mailto:albertomaria.metelli@polimi.it
https://icml.cc/virtual/2023/poster/24193
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