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Nesterov Acceleration for Convex Optimization

Problem setting:
min
x∈Rn

f(x),

where f : Rn → R is an L-smooth and (µ-strongly) convex function.

Nesterov’s accelerated gradient method (AGM):

AGM-C (convex) AGM-SC (strongly convex)

xk+1 = yk − 1

L
∇f (yk)

yk+1 = xk+1 +
k − 1

k + 2
(xk+1 − xk)

xk+1 = yk − 1

L
∇f (yk)

yk+1 = xk+1 +
1−

√
µ/L

1 +
√

µ/L
(xk+1 − xk)

AGM-SC with µ = 0 is not equivalent to AGM-C.

We present a unified framework for resolving the inconsistency.
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Inconsistency Between Nesterov’s AGM

ODE models: Discrete-time → Continuous-time.

Su et al. (2016): Ẍ + 3
t Ẋ +∇f(X) = 0 (AGM-C ODE).

Wilson et al. (2021): Ẍ + 2
√
µẊ +∇f(X) = 0 (AGM-SC ODE).

AGM-SC ODE with µ = 0 is not equivalent to AGM-C ODE.

Lagrangian formulations: ODE models can be obtained from the
Euler-Lagrange equation d

dt
∂
∂Ẋ

L(X, Ẋ, t) = ∂
∂XL(X, Ẋ, t).

Wibisono et al. (2016): First Bregman Lagrangian (convex).

Wilson et al. (2021): Second Bregman Lagrangian (strongly convex).

Second Lagrangian with µ = 0 is not equivalent to First Lagrangian.
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Inconsistency Between Nesterov’s AGM
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AGM-SC > AGM-C for large µ.

AGM-C > AGM-SC for small µ.

Q) Is there a unified algorithm that combines AGM-C and AGM-SC?
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Our Contributions

Q) Is there a unified algorithm that combines AGM-C and AGM-SC?

We propose:

Unified Bregman Lagrangian to combine two known Lagrangians.

Unified AGM ODE to combine two known ODE models.

Unified AGM to combine two algorithms: AGM-C and AGM-SC.

Unified ATM, a unified accelerated higher-order gradient method.

Unified AGM-G ODE, a novel ODE model for minimizing gradient
norm of strongly convex objective functions.
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Main Result 1. Unified Lagrangian Formulation

Given smooth real functions α, β, γ : R → R,

Unified Bregman Lagrangian:

L
(
X, Ẋ, t

)
= eα+γ

((
1 + µeβ

)
Dh

(
X + e−αẊ,X

)
− eβf(X)

)
.

Unified Bregman Lagrangian flow (from Euler–Lagrange equation):

Ẋ = eα(Z −X)

d

dt
∇h(Z) =

µβ̇eβ

1 + µeβ
(∇h(X)−∇h(Z))− eα+β

1 + µeβ
∇f(X).

Theorem (Convergence of Unified Bregman Lagrangian flow)

f(X(t))− f (x∗) ≤ O
(
e−β(t)

)
.
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Main Result 1. Unified Lagrangian Formulation

First Bregman Lagrangian flow (convex case):

d

dt
∇h(Z) = −eα+β∇f(X).

Second Bregman Lagrangian flow (strongly convex case):

d

dt
∇h(Z) = β̇ (∇h(X)−∇h(Z))− eα

µ
∇f(X).

Unified Bregman Lagrangian flow:

d

dt
∇h(Z) =

µβ̇eβ

1 + µeβ
(∇h(X)−∇h(Z))− eα+β

1 + µeβ
∇f(X).

Unified Bregman Lagrangian flow reduces to:

First Bregman Lagrangian flow (Wibisono et al., 2016) when µ = 0.

Second Bregman Lagrangian flow (Wilson et al., 2021) as t → ∞.
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Main Result 2. Unified ODE Model

Choosing β(t) = log
(

1
µ sinh2

(√
µ
2 t

))
, α(t) = β̇(t), and γ(t) = β(t),

Unified AGM ODE:

Ẍ +

(√
µ

2
tanh

(√
µ

2
t

)
+

3
√
µ

2
coth

(√
µ

2
t

))
Ẋ +∇f(X) = 0

Theorem (Convergence of Unified AGM ODE)

f(X(t))− f (x∗) ≤ O
(
min

{
1/t2, e−

√
µt
})

.
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Main Result 2. Unified ODE Model

AGM-C ODE, O(1/t2) rate:

Ẍ +
3

t
Ẋ +∇f(X) = 0.

AGM-SC ODE, O(e−
√
µt) rate:

Ẍ + 2
√
µẊ +∇f(X) = 0.

Unified AGM ODE, O(min{1/t2, e−
√
µt}) rate:

Ẍ +

(√
µ

2
tanh

(√
µ

2
t

)
+

3
√
µ

2
coth

(√
µ

2
t

))
Ẋ +∇f(X) = 0

t

2
√
µ

C
oe

ffi
ci

en
t

of
Ẋ

AGM-C ODE

AGM-SC ODE

Unified AGM ODE
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Main Result 3. Unified Algorithm

Unified AGM:

xk+1 = yk − 1

L
∇f (yk)

yk+1 = xk+1 +

(
tanh

(
k+1
2

ι
√
q
)
−√

q
) (

coth
(
k+2
2

ι
√
q
)
−√

q
)

1− q
(xk+1 − xk) ,

where q = µ/L and ι = − log(1−
√
q)√

q .

Theorem (Convergence of Unified AGM)

f(xk)− f (x∗) ≤ O

(
min

{
1/k2,

(
1−

√
µ/L

)k
})

.
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Main Result 3. Unified Algorithm

AGM-C (convex) AGM-SC (strongly convex)

xk+1 = yk − 1

L
∇f (yk)

yk+1 = xk+1 +
k − 1

k + 2
(xk+1 − xk)

xk+1 = yk − 1

L
∇f (yk)

yk+1 = xk+1 +
1−√

q

1 +
√
q
(xk+1 − xk)

Unified AGM

xk+1 = yk − 1

L
∇f (yk)

yk+1 = xk+1 +

(
tanh

(
k+1
2

ι
√
q
)
−√

q
) (

coth
(
k+2
2

ι
√
q
)
−√

q
)

1− q
(xk+1 − xk) ,

Unified AGM reduces to:

AGM-C and O(1/k2) rate when µ = 0.

AGM-SC and O((1−
√
µ/L)k) rate as k → ∞.
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Main Result 4. Extension to Higher-Order Setting

Problem setting:

Distance-generating funtion h satisfies Dh(x, y) ≥ 1
p∥y − x∥p.

f is L-smooth of order p− 1: ∥∇p−1f(y)−∇p−1f(x)∥ ≤ L∥y − x∥.
f is µ-uniformly convex with respect to h: µDh(x, y) ≤ Df (x, y).

We propose Unified accelerated tensor method (Unified ATM).

Theorem (Convergence of Unified ATM)

f(X(t))− f (x∗) ≤ O
(
min

{
1/tp, e−p p√Cµt

})
,

f(xk)− f (x∗) ≤ O

(
min

{
1/kp,

(
1 + p p

√
Cµ/L

)−k
})

.

This extends the O(1/tp) and O(1/kp) convergence rate results for the
convex case (µ = 0), established in (Wibisono et al., 2016).
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Main Result 5. Gradient Norm Minimization

H-kernel (novel tool): Ẋ(t) = −
∫ t
0 H(t, τ)∇f(X(τ)) dτ .

AGM-C ODE (Su et al., 2016), f(X(T ))− f(x∗) ≤ O(1/T 2):

Ẍ +
3

t
Ẋ +∇f(X) = 0 ⇔ Ẋ(t) = −

∫ t

0

τ3

t3
∇f(X(τ)) dτ

OGM-G ODE (Suh et al., 2022), ∥∇f(X(T ))∥2 ≤ O(1/T 2):

Ẍ +
3

T − t
Ẋ +∇f(X) = 0 ⇔ Ẋ(t) = −

∫ t

0

(T − t)3

(T − τ)3
∇f(X(τ)) dτ

Symmetric relationships:

Time-reversed relationship (t ↔ T − t) between the coefficients of Ẋ.

Anti-transpose relationship (t ↔ T − τ) between the “H-kernel”s.
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Main Result 5. Gradient Norm Minimization

Symmetric relationships:

Time-reversed relationship (t ↔ T − t) between the coefficients of Ẋ.

Anti-transpose relationship (t ↔ T − τ) between the “H-kernel”s.

Unified AGM ODE, f(X(T ))− f(x∗) ≤ O(min{1/T 2, e−
√
µT }):

Ẍ +

(√
µ

2
tanh

(√
µ

2
t

)
+

3
√
µ

2
coth

(√
µ

2
t

))
Ẋ +∇f(X) = 0

Unified AGM-G ODE (from symmetric relationships):

Ẍ +

(√
µ

2
tanh

(√
µ

2
(T − t)

)
+

3
√
µ

2
coth

(√
µ

2
(T − t)

))
Ẋ +∇f(X) = 0

Theorem (Convergence of Unified AGM-G ODE)

∥∇f(X(T ))∥2 ≤ O
(
min

{
1/T 2, e−

√
µT

})
.
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Numerical Experiment: ℓ2-Regularized Logistic Regression

min
x∈Rn

f(x) =
1

m

( m∑
i=1

(−yia
T
i x+ log(1 + ea

T
i x)) + λ∥x∥2

)
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Unified AGM ≈ AGM-SC > AGM-C for large µ.

Unified AGM ≈ AGM-C > AGM-SC for small µ.

Unified AGM combines the benefits of AGM-C and AGM-SC.
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Conclusion

Contributions

We developed a framework for designing algorithms that handle the convex
case (µ = 0) and the strongly convex case (µ > 0) in a unified way.

Unified Bregman Lagrangian, Unified AGM ODE, Unified AGM.

Extension to higher-order setting: Unified ATM.

Gradient norm minimization: Unified AGM-G.
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