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Motivation

Why are neural networks able to find representations that
capture the shared structure in data?

2



Motivation

Why are neural networks able to find representations that
capture the shared structure in data?

2



Prediction Space

We analyze the training trajectories of neural networks in
prediction space.

Consider a neural network with weights w and inputs
{xi}Ni=1. The predictions

Pw =


pw(y = 1 | x1) pw(y = 2 | x1) · · · pw(y = C | x1)
pw(y = 1 | x2) pw(y = 2 | x2) · · · pw(y = C | x2)

... ... ... ...
pw(y = 1 | xN) pw(y = 2 | xN) · · · pw(y = C | xN)


is an N × C dimensional object.
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Trajectories in Prediction Space

We convert training
trajectories in weight
space

(w1, w2, · · · , wT )

into trajectories in
prediction space

(Pw1 , Pw2 , · · · , PwT
).

Imagenet

Random 333 classes

Dogs

Vertebrates

Instrumentality

Random labels

InPCA reveals that the training trajectories are effectively
low‐dimensional in prediction space.
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Information Geometry

We use tools from information geometry to study the
prediction space.

Probabilistic model Pw is a point on a statistical manifold
with the metric being the Fisher information metric.

We consider

√
Pw =



√
pw(y = 1 | x1)

√
pw(y = 2 | x1) · · ·

√
pw(y = C | x1)√

pw(y = 1 | x2)
√

pw(y = 2 | x2) · · ·
√

pw(y = C | x2)
... ... ... ...√

pw(y = 1 | xi)
√

pw(y = 2 | xi) · · ·
√

pw(y = C | xi)
... ... ... ...√

pw(y = 1 | xN)
√

pw(y = 2 | xN) · · ·
√

pw(y = C | xN)


,

and note that L2 norm of each row 1.
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Information Geometry
We think of

√
Pw as a point on the product of N spheres.

The geodesic under the FIM is exactly the great circle
distance, i.e.,

√
P λ
u,v =

sin((1−λ)dG)
sin(dG)

√
Pu +

sin(λdG)
sin(dG)

√
Pv, λ ∈ [0, 1].
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Computational Info. Geometry

Equipped with these ideas,
we study the trajectories
with the following tools:

Geometric progress

tw = infλ∈[0,1] dG(Pw, P
λ
0,∗)

Riemann Length

L = 2
∫ 1

0

√
dB(Pw(t), Pw(t+dt))

Comparing curves

dtraj(τu, τv) =
∫ 1

0
dB(Pu(t), Pv(t))dt
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Results - Training on different tasks

Imagenet

Instrumentality

Conveyance

Vertebrates

Dog

Reptile

Bird

Invertebrates

Entity (1000)

Animal (398) Artifact (522)

Vertebrate (337) Invertebrate (61) Instrumentality (358)

Conveyance (72)Reptile (36) Dog (118) Bird (59)
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Results - Self-supervised learning

9



Results - Episodic meta-learning

Supervised

Episodic 2-way

Episodic 5-way

P0

P*

2-way task
5-way task
7-way task
CIFAR10

P0

P*
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Conclusion

We develop tools to study the training trajectories of
representations in prediction space.

These trajectories are effectively low‐dimensional in
prediction space, but we don’t fully understand why.

ArXiv:2210.17011 github.com/grasp‐lyrl/picture_of_space_of_tasks
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