

AudioLDM: Text-to-Audio Generation with Latent Diffusion Models

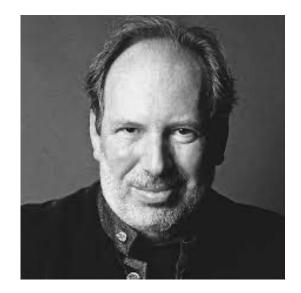
The International Conference on Machine Learning (ICML)

Haohe Liu*, Zehua Chen*, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, Mark D. Plumley

Audio Generation

The creation of sound through various ways

• The targets include:


- Sound Effect (Natural, Human-made objects, Animal, etc.)
- *Speech* (Emotion, Pace, Gender, etc.)
- *Music* (Genre, Rhythm, Instruments, etc.)
- Other (Imaginary sound, compositional sound)

Text-to-Audio Generation Usage Cases

- Computational "foley artist": (e.g., https://www.thefoleybarn.com)
 - Game developer: e.g., A ghost is haunting a house.
 - Audio producer: e.g., high heels hitting metal ground.
 - Movie producer: e.g., the laser sound from a laser gun.
 - ...
- Automatic content creation (> 60 startups¹)
 - Endless music
 - Audiobook with ambient noises
 - White noise for meditation
 - .
- In the Academia

¹https://github.com/csteinmetz1/ai-audio-startups 7/24/23

Sound is often the unsung hero of the movie world - Hans zimmer

Related works

Label-to-Audio Generation

• Acoustic Scene (Kong et al., 2019), Sound event (Liu et al., 2019), FootStep (Comunit et al. 2019), ...

Text-to-Audio Generation

• DiffSound (Yang et al., 2022), AudioGen (Kreuk et al., 2022), Make-an-Audio (Huang et al., 2023)

Text-to-Music Generation

- MusicLM (Andrea et al., 2023)
- Moûsai (Flavio et al., 2023)
- Noise2Music (Huang et al., 2023)

Others

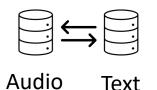
• JukeBox (Dhariwal et al., 2020), AudioLM (Borsos et al., 2022), SingSong (Donahue et al., 2023),...

Comparison with previous studies

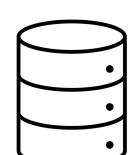
- Previous audio generation studies:
 - Requires large-scale audio-text pairs
 - Prev: Text \rightarrow Audio \rightarrow Loss \rightarrow Backprop
 - Our: Audio \rightarrow Audio \rightarrow Loss \rightarrow Backprop
 - High computational cost
 - Prev: 64 or 32 V100 GPUs (AudioGen, DiffSound)
 - Our: 1 GPUs
 - Limited generation quality and diversity.
 - Discrete latent space may limit model performance

Previous works: 10+ datasets, 800K audio-text pairs (still not enough).

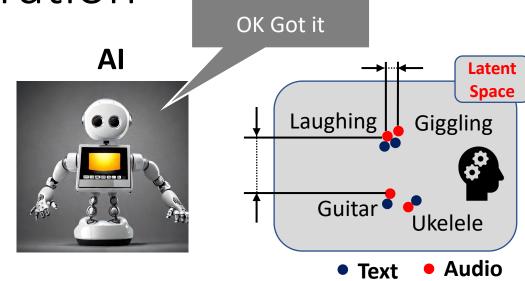
Self-supervised Learning for Audio Generation!



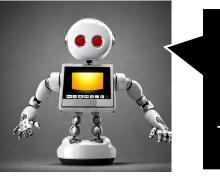
Self-supervised Audio Generation


Step 1

Human Developer :

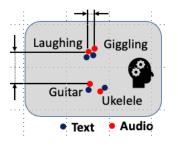


Here are some audio-text pair, try to figure out their relation!



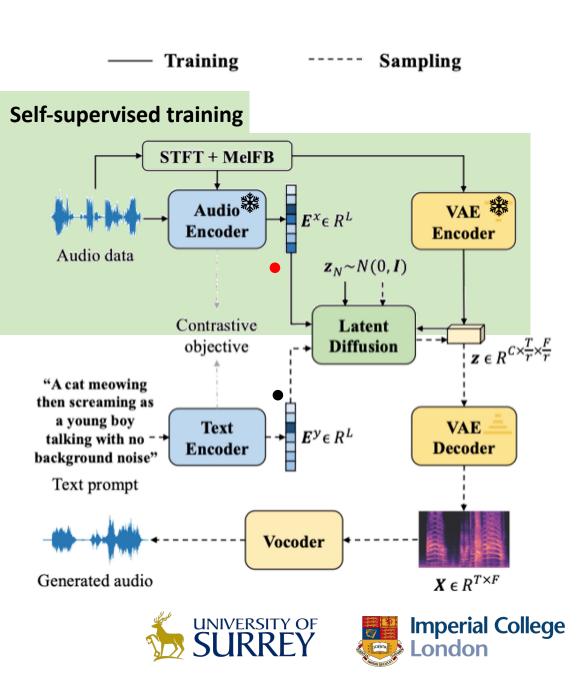
Human Developer: Here are more audio data, Try to figure out how to generate them using your knowledge!

Nobody knows audio better than me!!!


Tell me what you want!

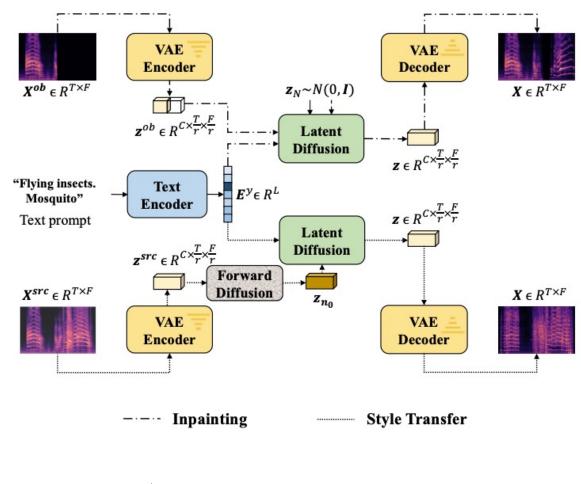
Audio

AudioLDM


- 1. Contrastive Language-Audio Learning (CLAP) Encoders
 - Align audio and text in one space.

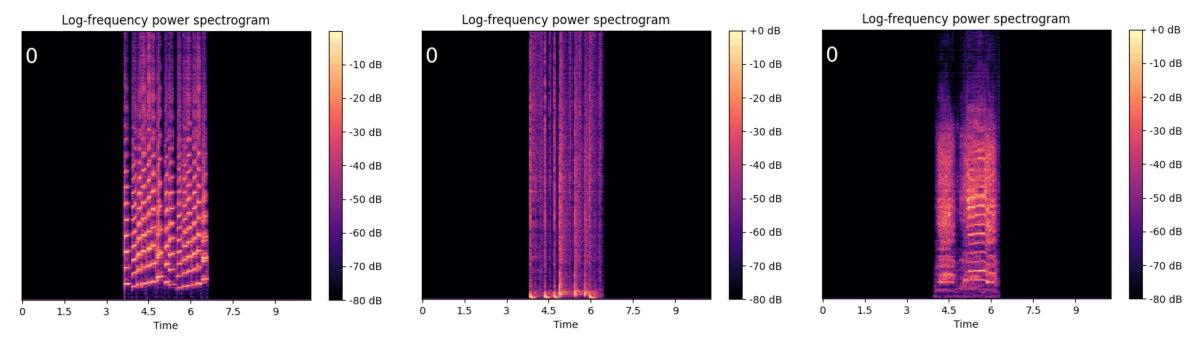
2. Latent Diffusion Models

• Learn to generate VAE latent conditioned on CLAP embedding


3. Mel-spectrogram Autoencoder

- Learn latent representations.
- 4. Mel-to-Waveform Vocoder
 - Reverse Mel back to waveform

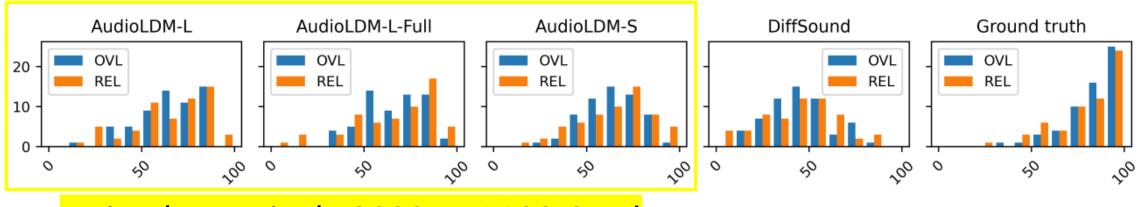
Zero-shot down stream tasks


- Audio style transfers
 - Corrupt -> Reverse Diffusion
- Audio inpainting
 - Provide temporal hint during sampling.
- Audio super-resolutions
 - Provide frequency hint during sampling.

Audio Style Transfer

Trumpet → Children Singing

Drum beats → Ambient Music


Sheep vocalization→ Narration, monologue

Result – SOTA comparison

Model	Text Data	Use CLAP	Params	Duration (h)	FD↓	IS ↑	$\mathrm{KL}\downarrow$	FAD \downarrow	$ $ OVL \uparrow	REL ↑
Ground truth	-	-	-	-	-	-	-	-	$ 83.61_{\pm 1.1}$	$80.11_{\pm 1.2}$
DiffSound [†] (Yang et al., 2022)	✓	×	400M	5420	47.68	4.01	2.52	7.75	$45.00_{\pm 2.6}$	$43.83_{\pm 2.3}$
AudioGen [†] (Kreuk et al., 2022)	1	×	285M	8067	-	-	2.09	3.13	-	-
AudioLDM-S-Full-RoBERTa	1	X	181M	145	32.13	4.02	3.25	5.89	-	-
AudioLDM-S	X	✓	181M	145	29.48	6.90	1.97	2.43	$63.41_{\pm 1.4}$	$64.83_{\pm 0.9}$
AudioLDM-L	×	✓	739M	145	27.12	7.51	1.86	2.08	$64.30_{\pm 1.6}$	$64.72_{\pm 1.6}$
AudioLDM-S-Full	X	✓	181 M	8886	23.47	7.57	1.98	2.32	-	-
AudioLDM-L-Full	×	\checkmark	739M	8886	23.31	8.13	1.59	1.96	$65.91_{\pm 1.0}$	$\boldsymbol{65.97}_{\pm 1.6}$

Trained on a single 3090 or A100 GPU!

A few take aways here, thanks!

- Project Page: <u>https://audioldm.github.io/</u>
- Hugging Face Space (Listen to the samples contributed by the community!):
 - https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation
- Github:
 - Pretrained model: <u>https://github.com/haoheliu/AudioLDM</u>
 - Evaluation tools: https://github.com/haoheliu/audioldm_eval
- Interesting demo website:
 - <u>https://www.latent.store/albums</u>

