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Graph Neural Networks

Popular graph neural networks (GNNs) are message
passing neural networks.

Adjacent nodes send messages to each other, which
are then aggregated and used to update node features.
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U is the message function
P is an aggregating function

o}, is an update function




The Depth Limitation of GNNs

* To capture long range information, we need GNNs
with sufficient depth.

e Current GNNs suffer from performance degradation
at higher depth, which limits their application.

e This degradation is attributed to two problems:
over-smoothing and over-squashing




Over-smoothing and Over-squashing

Over-smoothing: nodes’ features become similar
to each other as the number of layers increases. ‘
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mmm) Degrade classification accuracy

Over-squashing: graph bottlenecks cause messages
between distant nodes to become overly-squashed.

‘ Unable to capture long range interactions o B _ _
Over-squashing impedes the GNN’s ability to capture long range interactions

Over-smoothing causes nodes’ features to become indistinguishable



Ollivier-Ricci Curvature

In Riemannian geometry, curvature is a local
measure of geodesic dispersion.

The Ollivier-Ricci curvature on graph characterizes the
well-connectedness of local graph neighborhoods.
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image source:
https://starchild.gsfc.nasa.gov/docs/StarChild/questions/question35.html

The Ollivier-Ricci curvature captures the essence
of geodesic dispersion using optimal transport.
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- k(u,v) <0
n(u, v) =1- % Ollivier-Ricci curvature values on a local graph neighborhood

‘ Not dependent on the differential structure



Positive Curvature and Over-smoothing

k(u,v) >0

well-connected
neighborhoods
aggregate the same
information

Theorem 4.2. Consider the update rule given by Equa-
tion (1). Suppose the edge curvature k(u,v) > 0. For some
k, assume the update function ¢y, is L-Lipschitz, | X ;’f| <C
forall p € N(u) UN(v), and the message function 1y,
is bounded, i.e. | (x)| < M|x|, V. There exists a posi-
tive function h : (0,1) — R" dependent on the constants
L, M, C,n satisfying

* if @ is the sum operation then h is constant;

* if @ is the mean operation then h is decreasing;

such that
X{f“ — Xff“l < (1 = k(u,v))h(k(u,v)). (6)
In both cases, we clearly have

lim (1 — z)h(z) = 0. 7

z—1

A positively curved edge causes its
nodes to have similar representation

Proposition 4.3. Assume the graph is regular. Suppose
there exists a constant 6 > 0 such that for all edges
(u,v) € &, the curvature is bounded by k(u,v) > & > 0.
Consider the update rule given by equation 1. For all
k > 1, assume the functions ¢, are L-Lipschitz, € is re-
alised as the mean operation, |X9| < C forall p € V,
and the functions 1y are bounded linear operators, i.e.
[Yr(x)| < M|x|,Ya. The following inequality holds for
k > 1 and any neighboring vertices u ~ v

b owk| o 24 (3LM[1—=8)n]\"
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Furthermore, for any u,v € YV that are not necessarily
neighbors, the following inequality holds

k
xt-xt < 3|3 (L)L o

A sufficiently positively curved graph causes
its node features to exponentially converge



Negative Curvature and Over-quashing

k(u,v) <0

sparsely-connected
neighborhoods do not
effectively propagate
information

Proposition 4.4. Let £ be union of the edge set £ with
the set of all possible self-loops. Let S be the subset of é
containing edges of the form (p, q) withp € N, \{v} and
q € N\{u}. Supposing each vertex w is a vertex of at
most ;- edges in S. The following inequality holds

n(k(u,v) + 2)

<
5] < B

(10)
A negatively curved edge indicates a lack
of sufficient information pathways, i.e., it
induces a bottleneck

Theorem 4.5. Consider the update rule given by Equa-
tion (1). Suppose 1y, ¢y, are linear operators for all k, and
@ is the sum operation. If u,v are neighboring vertices
with neighborhoods as in Proposition 4.4 and S is defined
similarly then for all p € Ny \{v}, ¢ € Ny\{u}, we have
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where [%] is used to denote the Jacobian of y with regard

to x, and «, 3 satisfy
|S| +2
(0% S )
2 wen, (deg(w) +1)
|S|+2
(deg(w) +1)

(12)
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A negatively curved edge inhibits
effective message passing



Batch Ollivier-Ricci Flow (BORF)

Algorithm 1 Batch Ollivier-Ricci Flow (BORF)

Input: graph G = (V, £), # rewiring batches NV, # edges
added per batch h, # edges removed per batch k
for: = 1to N do
Find h edges (ui,v1),...,(up,vp) with minimal
Ollivier-Ricci curvature x, along with each summand
7j(p, ¢)d(p, q) in their optimal transportation cost sum
forallp,g € Vandj =1,h
Find k edges (u!,v!),...,(u*,v*) with maximal
Ollivier-Ricci curvature k
for j = 1to h do
Add to G the edge (p*, ¢*) given by

(p*,q") = argmaxd(p, q)m;(p, q)

end for
Remove edges (u!,v!),..., (u¥,v*) from G
end for

Find the most positively curved and most
negatively curved edges

Add edges to promote message passing around
bottlenecks, thus alleviating over-squashing

Remove the most positively curved edges to
suppress over-smoothing

Using optimal transport

Advantage: can utilize the optimal transport plan
to find the best edges to add

Disadvantage: computational cost, but this can be
reduced by using approximations



Experiments

Table 2. Classification accuracies of GCN and GIN with None, SDRF, FoSR, and BORF rewiring on various node classification datasets.
Best results are highlighted in bold.

GCN GIN
DATA SET NONE SDRF FOoSR BORF NONE SDRF FoSR BORF
CORA 86.7+0.3 86.3+0.3 8.9+03 87.54+0.2 760+£06 749+0.1 75.14+08 78.440.4
CITESEER 72.3+03 726+03 7234+03 73.84+0.2 593+09 60.3+08 61.7+0.7 63.1+0.8
TEXAS 442415 439+16 46.0+16 49.44+1.2 535+3.1 503+3.7 470+3.7 63.1+1.7

CORNELL 41.5+1.8 422+15 402+16 50.8+1.1 365+22 400+21 356+24 48.611.2
WISCONSIN 446+14 462+1.2 483+13 50.3+0.9 485+22 488+19 485+21 54.91+1.2
CHAMELEON 59.24+0.6 59.4+0.5 593+06 61.5+0.4 581+21 584+21 56.3+22 65310.8

Table 3. Classification accuracies of GCN and GIN with None, SDRF, FoSR, and BORF rewiring on various graph classification datasets.
Best results are highlighted in bold.

GCN GIN
DATA SET NONE SDRF FoSR BORF NONE SDRF FoSR BORF
ENZYMES 25.54+1.3 26.14+1.1 27.44+1.1 247410 31312 33513 253+12 35.5 +1.2
IMDB 49.34+1.0 49.14+09 49.6+0.8 50.1+0.9 69.0+1.3 68.6+1.2 69.5 + 1.1 71.3+1.5

MUTAG 68.8+21 705+21 756+17 75.8+1.9 755+29 T77.3+23 752+3.0 80.8+2.5
PROTEINS 70.6+10 714+08 723+09 71.0+08 69.7+1.0 722+09 74.2+08 71.3+1.0




Table 4. Classification accuracies of GCN at depths 5, 7, and 9 with different BORF rewiring options on Cornell and Mutag datasets.

DATA SET  # LAYERS NONE BEST SETTINGS ONLY REMOVE ONLY ADD REMOVE & ADD EQUALLY

> 41.3 + 1.4 455+ 1.1 46.4 + 1.2 44.7+ 1.3 45.9 + 1.2
CORNELL 7 395+ 1.7 41.5+ 1.5 43.2+ 1.3 428 +1.4 41.8+1.3

9 35.5+1.4 40.9+1.3 41.94+1.6 40.3 + 2.0 39.9+1.6

5 67.7+t1.6 75.4 4+ 2.1 68.5 +£ 2.8 76.1 + 2.2 71.8+1.2
MUTAG 7 64.1 £ 2.1 72.1+1.3 65.1 £1.5 75.2+24 66.2 +1.9

9 63.1 +1.2 69.7 £ 1.5 60.7 £ 2.5 704+ 1.7 61.3+1.5




Conclusion

L Ollivier-Ricci graph curvature provides a unified framework to study both the
Over-smoothing and Over-squashing problems.

Rewiring is a natural way to better GNN performance.

WFuture work: Explore ways we can utilize curvature to study and improve GNNs.



