Exhibit Hall 1 \# 311

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

Sam Lobel*, Akhil Bagaria* \& George Konidaris Brown University

Exploration is Key to Scaling Reinforcement Learning

- One of the biggest open problems in RL
- Bonus-based exploration via novelty search

Sparse Reward

Open Ended

Optimal Exploration in Tabular Domains

$$
\begin{gathered}
R(s, a)=R_{e}(s, a)+\mathcal{B}(s, a) \\
\mathcal{B}(s, a) \\
\propto \sqrt{\frac{1}{\mathcal{N}(s, a)}}
\end{gathered}
$$

				\square			-
				\square			
				-			
			\triangle				\square
				\square			

Current Approach to Pseudocounts: Density Modeling

Current Approach to Pseudocounts: Density Modeling

Existing methods track changes in probability density and place strong restrictions on the density models:

- Training: fully online, learning positive, update on a state once
- Architectural: normalized probability (no GANs, VAEs etc)

Count-based exploration can be improved by computing pseudocounts directly \& under a less restrictive setting

Using Randomness to Extract Counts

Counts naturally emerge from coin-flip distributions
made on state visitations

$$
c_{i} \sim\{-1,1\}^{d}
$$

$)=1 \quad 0 \begin{aligned} & \frac{1}{d} E\left[\| \| \|^{2}\right] \\ & \frac{1}{2}\end{aligned}$

An Objective Function for Tracking Counts

- MSE rephrases averaging as an optimization problem
- Func approximator to map states to coin-flip vectors

$$
\begin{gathered}
f^{*}(s)=\underset{f}{\arg \min } \sum_{i=1}^{m}\left\|v_{i}-f\left(s_{i}\right)\right\|^{2}=\underset{f}{\arg \min } \sum_{i=1}^{m} \sum_{j=1}^{d}\left(v_{i j}-f\left(s_{i}\right)_{j}\right)^{2} \\
\left\|f^{*}(s)\right\| \approx \sqrt{\frac{1}{n}}
\end{gathered}
$$

- Standard supervised learning (regression) objective

How Accurate are the Pseudocounts?

What does the Exploration Bonus look like?

Pseudocount Bonus

Exploration bonus attracts the agent to the frontier

Better Bonus Leads to Better RL

Pseudocounts are More Robust to Stochasticity

Gradually decaying bonus is crucial in stochastic domains

Conclusion

- Pseudocounts without density modeling
- Counts emerge from the sampling distribution of Bernoulli trials
- Standard supervised learning objective; use favorite DL tricks and representations
- CFN gets accurate counts
- Better RL performance than existing methods

Exhibit Hall 1 \# 311

