

# Google DeepMind

# Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments

LINK TO PAPER

Daniel Jarrett, Corentin Tallec, Florent Altché, Thomas Mesnard, Rémi Munos, Michal Valko

#### Introduction

How to explore the world when external rewards are sparse or absent?

- Curiosity-Driven Exploration: Prioritize exploring (and learning) what is not yet understood, where "understanding" := ability to predict outcome.
- Problem of Stochasticity: Predictive error-based exploration agents are often "stuck" around high-entropy elements in the state-action space.
- Example (Noisy TV Problem): Since the agent never knows what the next state is, they will stand in front of it, hoping to learn what is never learnable.

**Key Idea**: Disentangle (irreducible) "**noise**" from (reducible) "**novelty**", and only use novelty to guide exploration. How?

- Learn representations of the future capturing precisely the unpredictable aspects of each outcome (no more, no less).
- Use this as additional input when making predictions, such that intrinsic rewards only reflect the **predictable** aspects of world dynamics.

### Curiosity

#### Definition 1 (Curiosity): Define the intrinsic reward

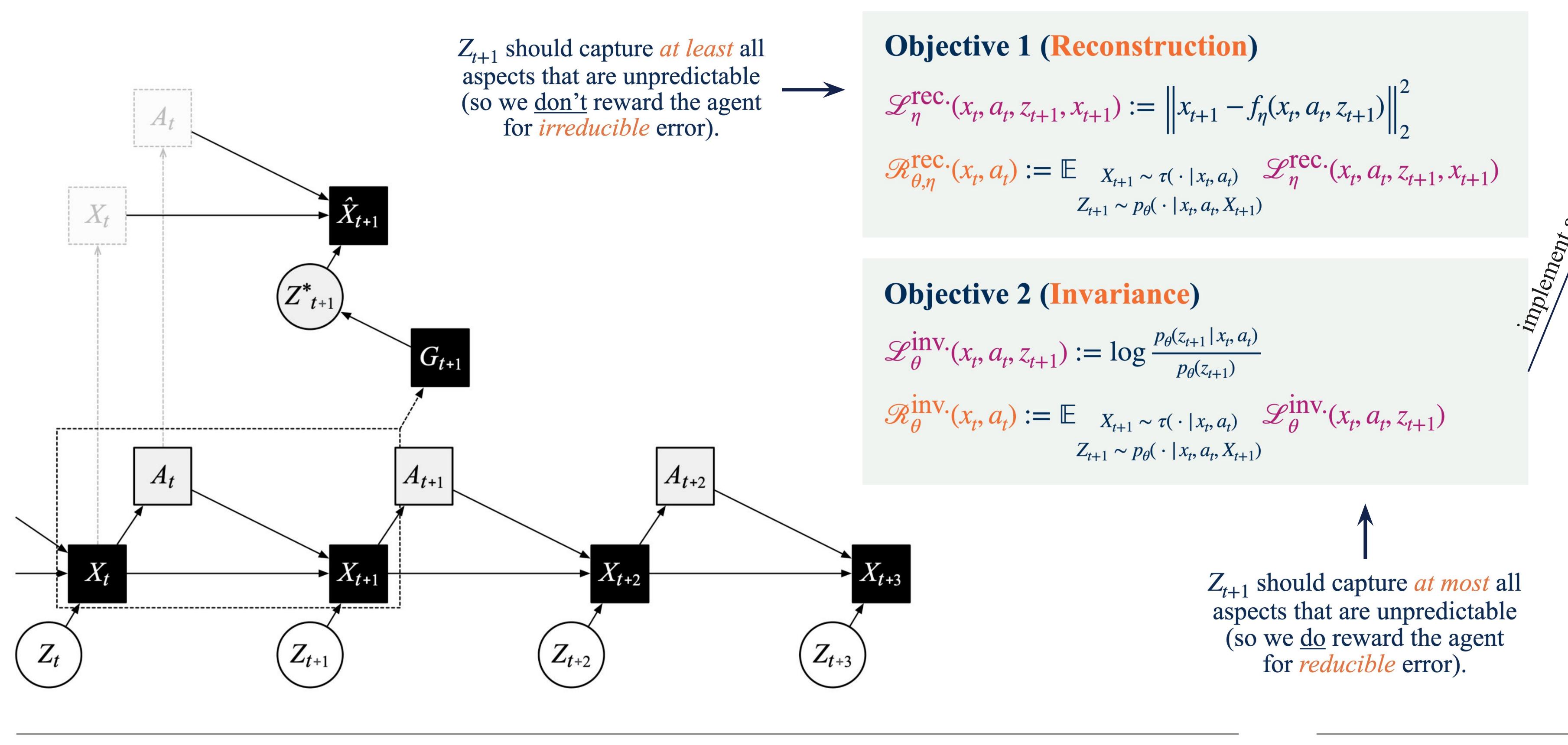
$$\mathcal{R}_{\eta}(x_{t}, a_{t}) := -\mathbb{E}_{X_{t+1} \sim \tau(\cdot | x_{t}, a_{t})} \log \tau_{\eta}(X_{t+1} | x_{t}, a_{t})$$

The agent performs

(policy) (model) maximize min 
$$\mathbb{E}_{X_t \sim \rho_{\pi}} \mathcal{R}_{\eta}(X_t, A_t)$$
  $\frac{\eta}{\pi} A_t \sim \pi(\cdot | X_t)$ 

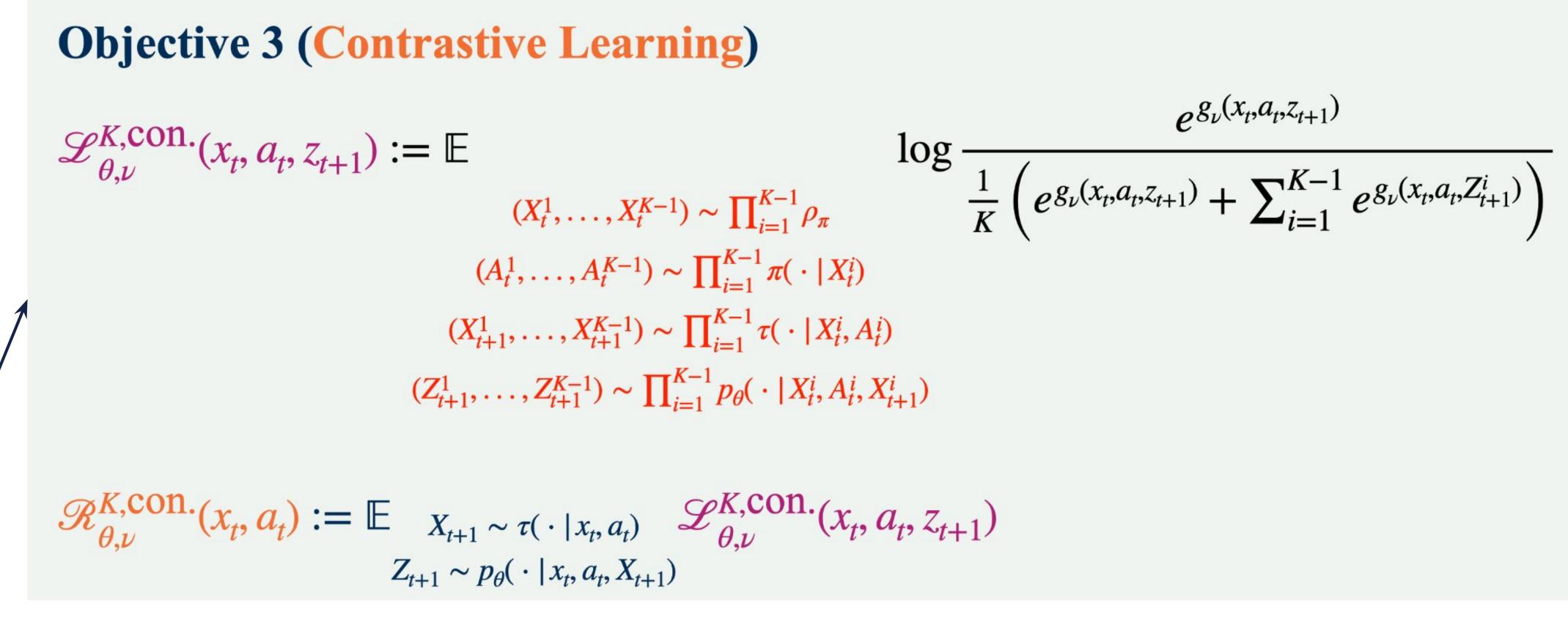
#### Two Models + Two Objectives

Learn a Reconstructor  $f_n$  for  $f(X_t, A_t, Z_{t+1})$  and a Generator  $p_{\theta}$  for  $p_n(Z_{t+1} | X_t, A_t, X_{t+1})$ .



#### Implementation

Ask a Critic to  $g_{ij}$  to maximize a contrastive loss.



In Practice: (1) batch size  $K < \infty$ , (2)  $\nu$  is not fully optimized, (3)  $\lambda$  is a hyperparameter.

The intrinsic reward is now:

$$\mathcal{R}_{\theta,\eta,\nu}^{K}(x_t, a_t) := \frac{1}{\lambda} \mathcal{R}_{\theta,\eta}^{\text{rec.}}(x_t, a_t) + \mathcal{R}_{\theta,\nu}^{K,\text{con.}}(x_t, a_t)$$

and the agent performs:

(policy) (model) maximize min max 
$$\mathbb{E}_{X_t \sim \rho_{\pi}} \mathcal{R}_{\theta,\eta,\nu}^K(X_t, A_t)$$
  $A_t \sim \pi(\cdot | X_t)$ 

Overall, simple drop-in modification on top of any choice of curiosity-driven exploration.

### Curiosity in Hindsight

#### Definition 2 (Curiosity in Hindsight): Define the hindsight intrinsic reward

$$\mathcal{R}_{\theta,\eta}(x_t, a_t) := \frac{1}{\lambda} \mathcal{R}_{\theta,\eta}^{\text{rec.}}(x_t, a_t) + \mathcal{R}_{\theta}^{\text{inv.}}(x_t, a_t)$$

The agent performs

(policy) (model) maximize min 
$$\mathbb{E}_{X_t \sim \rho_{\pi}} \mathcal{R}_{\theta,\eta}(x_t, a_t)$$
  $\theta,\eta$   $A_t \sim \pi(\cdot | X_t)$ 

## Illustrative Example

