Nonparametric Generative Modeling with Conditional Sliced-Wasserstein Flows

Chao Du, Tianbo Li, Tianyu Pang, Shuicheng Yan, Min Lin Sea Al Lab, Singapore

ICML 2023

Overview

Topic: Nonparametric method & Conditional generative modeling

Overview

Topic: Nonparametric method & Conditional generative modeling

Contribution:

- Reveal the <u>conditional modeling capabilities</u> of Sliced-Wasserstein Flows
- Introduce inductive biases for image tasks into Sliced-Wasserstein Flows

Overview

Topic: Nonparametric method & Conditional generative modeling

Contribution:

- Reveal the <u>conditional modeling capabilities</u> of Sliced-Wasserstein Flows
- Introduce <u>inductive biases for image tasks</u> into Sliced-Wasserstein Flows

Takeaways:

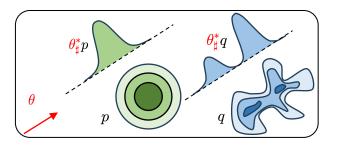
- The first nonparametric conditional generative model (to our best knowledge)
- Achieve comparable performance with parametric generative models

Sliced-Wasserstein Flows (SWF)

Sliced-Wasserstein distance:

Based on projections: $\theta^*(x) \triangleq \langle \theta, x \rangle$

$$SW_2^2(p,q) \triangleq \int_{\mathbb{S}^{d-1}} W_2^2(\theta_{\sharp}^* p, \theta_{\sharp}^* q) d\theta$$

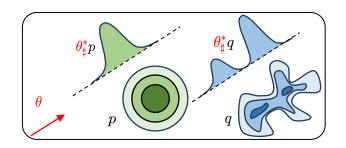


Sliced-Wasserstein Flows (SWF)

Sliced-Wasserstein distance:

Based on projections: $\theta^*(x) \triangleq \langle \theta, x \rangle$

$$SW_2^2(p,q) \triangleq \int_{\mathbb{S}^{d-1}} W_2^2(\theta_{\sharp}^* p, \theta_{\sharp}^* q) d\theta$$



Target distribution

SWF: Gradient flow in the Wasserstein space minimizing SW_2

$$\min_{p \in \mathcal{P}_2(\mathbb{R}^d)} SW_2^2(p,q) \quad \Rightarrow \quad \frac{\partial p_t(x)}{\partial t} + \nabla \cdot (p_t(x)v_t(x)) = 0$$

$$p_0$$

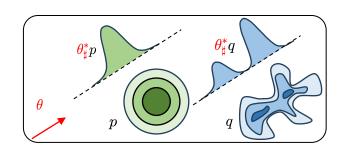
$$p_t$$

Sliced-Wasserstein Flows (SWF)

Sliced-Wasserstein distance:

Based on projections: $\theta^*(x) \triangleq \langle \theta, x \rangle$

$$SW_2^2(p,q) \triangleq \int_{\mathbb{S}^{d-1}} W_2^2(\theta_{\sharp}^* p, \theta_{\sharp}^* q) d\theta$$



SWF: Gradient flow in the Wasserstein space minimizing SW_2

$$\min_{p \in \mathcal{P}_2(\mathbb{R}^d)} SW_2^2(p,q) \quad \Box \rangle \quad \frac{\partial p_t(x)}{\partial t} + \nabla \cdot (p_t(x)v_t(x)) = 0$$

$$v_t(x) \triangleq -\int_{\mathbb{S}^{d-1}} \psi'_{t,\theta}(\theta^\top x) \cdot \theta \ d\theta$$

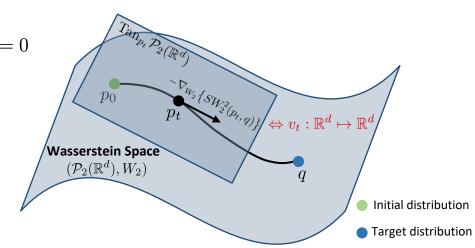
Velocity field:

Monte Carlo estimation over unit sphere

Bonnotte 2013; Liutkus et al., 2019

$$\psi_{t,\theta}'(z) = z - F_{\theta_{\sharp}^*q}^{-1} \circ F_{\theta_{\sharp}^*p_t}(z)$$

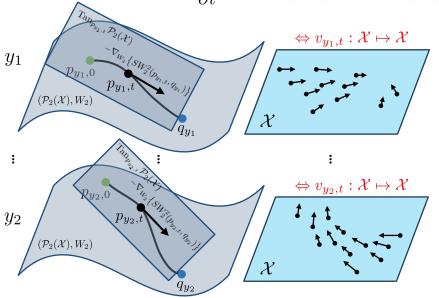
one-dimensional CDF estimations



Conditional SWF

Ideally: Collection of SWFs
$$\min_{p_y \in \mathcal{P}_2(\mathcal{X})} SW_2^2(p_y, q_y), \forall y \in \mathcal{Y}$$

$$\Leftrightarrow (p_{y,t})_{t \geq 0} \text{ solves } \frac{\partial p_{y,t}(x)}{\partial t} + \nabla \cdot (p_{y,t}(x)v_{y,t}(x)) = 0$$



data efficiency X

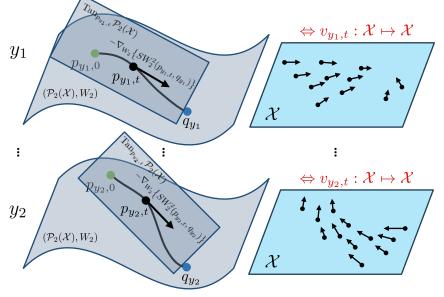
generalization X

Conditional SWF

Ideally: Collection of SWFs $\min_{p_y \in \mathcal{P}_2(\mathcal{X})} SW_2^2(p_y,q_y), \forall y \in \mathcal{Y}$

$$(p_{y,t})_{t \geq 0} \text{ solves } \frac{\partial p_{y,t}(x)}{\partial t} + \nabla \cdot (p_{y,t}(x) v_{y,t}(x)) = 0$$

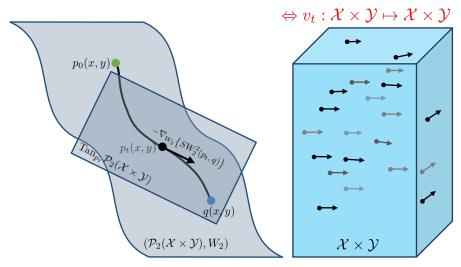
$$(p_t)_{t \geq 0} \text{ solves } \frac{\partial p_t(x,y)}{\partial t} + \nabla \cdot (p_t(x,y) v_t(x,y)) = 0$$



data efficiency X generalization X

 $\min_{p \in \mathcal{P}_2(\mathcal{X} \times \mathcal{Y})} SW_2^2(p, q)$ **This work:** SWF in the joint space

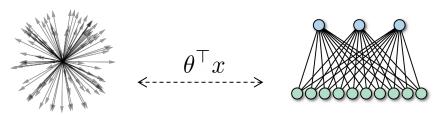
$$ho > (p_t)_{t \geq 0}$$
 solves $\frac{\partial p_t(x,y)}{\partial t} + \nabla \cdot (p_t(x,y)v_t(x,y)) = 0$



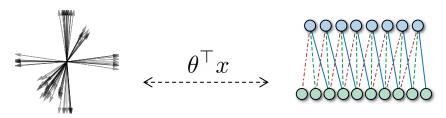
Observation: (under certain conditions) the velocities coincide!

$$v_t^{\mathcal{X}}(x,y) \approx v_{y,t}(x)$$
 $v_t^{\mathcal{Y}}(x,y) \approx 0$

Uniform projections ⇔ Fully-connected layers

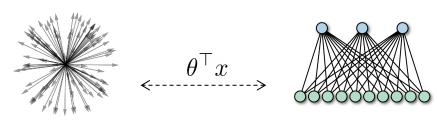


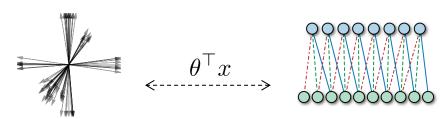
Locally-connected projections ⇔ Locally-connected layers

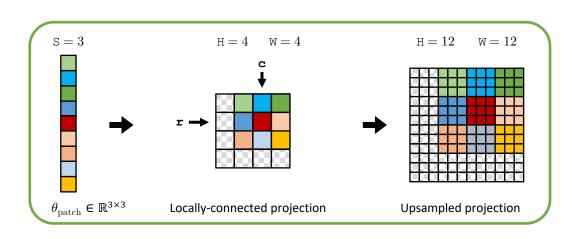


Uniform projections ⇔ Fully-connected layers

Locally-connected projections ⇔ Locally-connected layers

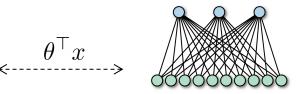


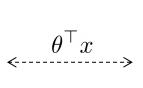


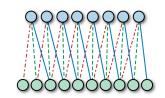


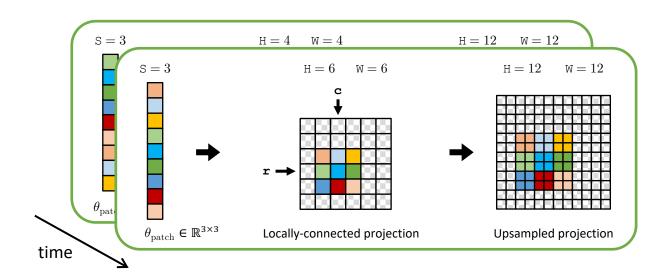
Uniform projections ⇔ Fully-connected layers

Locally-connected projections ⇔ Locally-connected layers



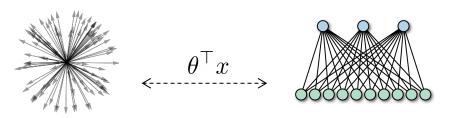


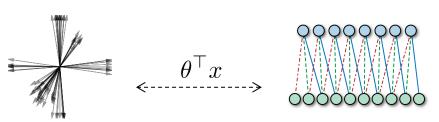




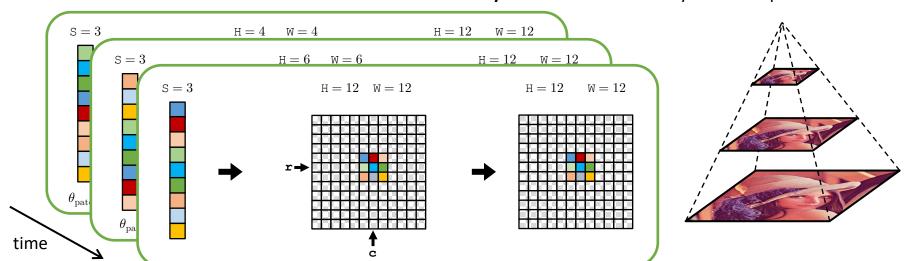
Uniform projections ⇔ Fully-connected layers

Locally-connected projections ⇔ Locally-connected layers





Pyramidal Schedules ⇔ Pyramidal Representation



Locally-Connected Projections & Pyramidal Schedules

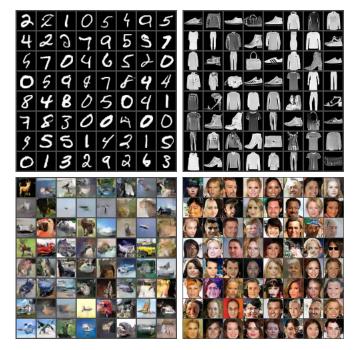
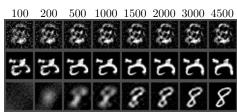


Table 1. FID↓ scores obtained by ℓ -SWF on CIFAR-10 and CelebA. \diamond Use 160×160 center-cropping. * Use 128×128 center-cropping. † Use 140×140 center-cropping.

Method	CIFAR-10	CelebA
Auto-encoder based		
VAE (Kingma & Welling, 2013)	155.7	85.7°
SWAE (Wu et al., 2019)	107.9	48.9*
WAE (Tolstikhin et al., 2017)	_	42^{\dagger}
CWAE (Knop et al., 2020)	120.0	49.7^{\dagger}
Autoregressive & Energy based		
PixelCNN (Van den Oord et al., 2016)	65.9	_
EBM (Du & Mordatch, 2019)	37.9	_
Adversarial		
WGAN (Arjovsky et al., 2017)	55.2	41.3^{\diamond}
WGAN-GP (Gulrajani et al., 2017)	55.8	30.0^{\diamond}
CSW (Nguyen & Ho, 2022b)	36.8	_
SWGAN (Wu et al., 2019)	17.0	13.2^{*}
Score based		
NCSN (Song & Ermon, 2019)	25.3	_
Nonparametric		
SWF (Liutkus et al., 2019)	> 200	$>150^{\dagger}$
SINF (Dai & Seljak, 2021)	66.5	37.3^{*}
ℓ-SWF (Ours)	59.7	38.3^{\dagger}

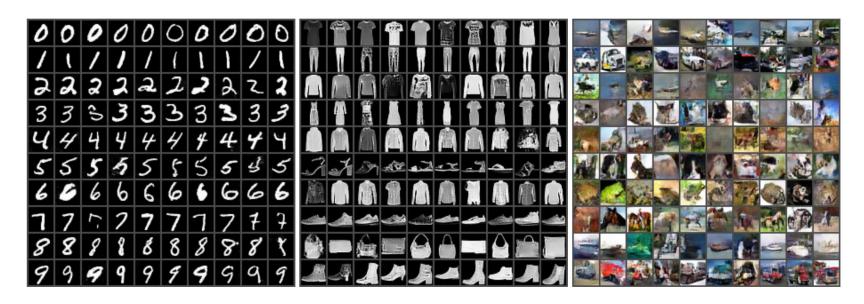


SWF (Liutkus et al., 2019)

SWF + Locally-Connected Projections

SWF + Locally-Connected Projections + Pyramidal Schedules

Conditional Generation



Class-conditional samples from CSWF on MNIST, Fashion MNIST and CIFAR-10.

Image Inpainting

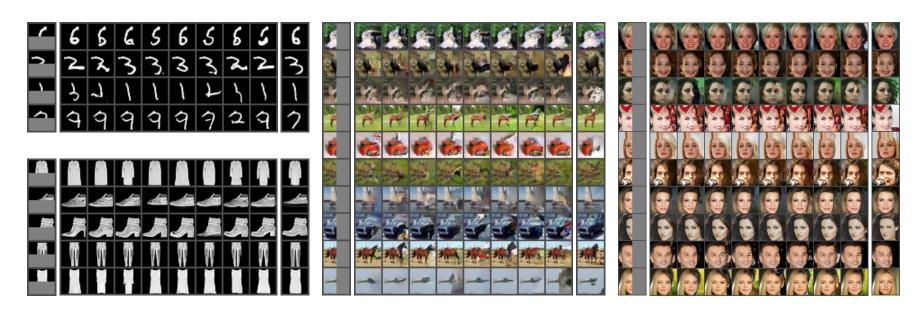


Image inpainting results of CSWF on MNIST, Fashion MNIST, CIFAR-10 and CelebA.

For more technical details and results, please visit

Poster:

Exhibit Hall 1 #120 (Poster Session 1, 11:00 AM to 1:30 PM on July 25)

Code:

https://github.com/duchao0726/Conditional-SWF

