

Do Perceptually Aligned Gradients Imply Robustness?

Roy Ganz, Bahjat Kawar and Michael Elad

Technion, Israel

ICML 2023

Ē

Adversarial Robustness and Perceptually Aligned Gradients (PAG)

Background Adversarial Robustness and Perceptually Aligned Gradients (PAG)

Adversarial Attacks are small imperceptible perturbation, malicously crafted to fool a deep learning-based classifier. •

"panda" 57.7% confidence

 $+.007 \times$

"nematode" 8.2% confidence

_

"gibbon" 99.3 % confidence

Ę

Adversarial Robustness and Perceptually Aligned Gradients (PAG)

- Adversarial Attacks are small imperceptible perturbation, malicously crafted to fool a deep learning-based classifier.
- Adversarial Robustness requires models to be insensitive to small amounts of noise added to the input.

Adversarial Robustness and Perceptually Aligned Gradients (PAG)

- Adversarial Attacks^[1] are small imperceptible perturbation, malicously crafted to fool a deep learning-based classifier.
- Adversarial Robustness requires models to be insensitive to small amounts of noise added to the input.
 - A common technique for obtaining such classifiers is <u>Adversarial Training</u>^[1,2]

$$\min_{\theta} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}} \max_{\delta \in \Delta} \mathcal{L}(f_{\theta}(\boldsymbol{x} + \delta), \boldsymbol{y})$$

- 1) Explaining and harnessing adversarial examples, Goodfellow et al., ICLR 2015
- 2) Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al., ICLR 2018

Ę

Adversarial Robustness and Perceptually Aligned Gradients (PAG)

• The input-gradients of robust classifiers are semantically meaningful and more aligned with human perception

Adversarial Robustness and Perceptually Aligned Gradients (PAG)

The input-gradients of robust classifiers are semantically meaningful and more aligned with human perception \rightarrow As a result, strong targeted adversarial attacks on models with PAG leads to <u>class related modifications</u>

Adversarial Robustness and Perceptually Aligned Gradients (PAG)

The input-gradients of robust classifiers are semantically meaningful and more aligned with human perception
 → As a result, strong targeted adversarial attacks on models with PAG leads to <u>class related modifications</u>

Adversarial Robustness and Perceptually Aligned Gradients (PAG)

The input-gradients of robust classifiers are semantically meaningful and more aligned with human perception
 → As a result, strong targeted adversarial attacks on models with PAG leads to <u>class related modifications</u>

Motivation

Perceptually Aligned Gradients (PAG) and Robustness

[1] Robustness may be at odds with accuracy. Tsipras et al.. ICLR 2019.

[2] Are perceptually-aligned gradients a general property of robust classifiers? Kaur et al. Arxiv.

[3] Rethinking the role of gradient-based attribution methods for model interpretability. Srinvas et al. ICLR 2021.

Motivation

Perceptually Aligned Gradients (PAG) and Robustness

[1] Robustness may be at odds with accuracy. Tsipras et al.. ICLR 2019.

[2] Are perceptually-aligned gradients a general property of robust classifiers? Kaur et al. Arxiv.

[3] Rethinking the role of gradient-based attribution methods for model interpretability. Srinvas et al. ICLR 2021.

Ē

Perceptually Aligned Gradients (PAG) Training Method

Ē

• We develop an objective that induces PAG while disentangling it from adversarial training:

Ē

• We develop an objective that induces PAG while disentangling it from adversarial training:

Cross-entropy loss

$$\mathcal{L}_{total}(\boldsymbol{x}, \boldsymbol{y}) = \mathcal{L}_{CE}(f_{\theta}(\boldsymbol{x}), \boldsymbol{y}) + \lambda \sum_{y_t \in \mathcal{C}} \mathcal{L}_{COS} \left(\nabla_{\boldsymbol{x}} f_{\theta}(\boldsymbol{x})_{y_t}, g(\boldsymbol{x}, y_t) \right)$$

We develop an objective that induces PAG while disentangling it from adversarial training: ٠

Cross-entropy loss $\mathcal{L}_{total}(\boldsymbol{x}, \boldsymbol{y}) = \mathcal{L}_{CE}(f_{\theta}(\boldsymbol{x}), \boldsymbol{y}) + \lambda \sum_{y_t \in \mathcal{C}} \mathcal{L}_{COS} \left(\nabla_{\boldsymbol{x}} f_{\theta}(\boldsymbol{x})_{y_t}, g(\boldsymbol{x}, y_t) \right)$

PAG inducing term

• We develop an objective that induces PAG while disentangling it from adversarial training:

Cross-entropy loss $\mathcal{L}_{total}(\mathbf{x}, \mathbf{y}) = \mathcal{L}_{CE}(f_{\theta}(\mathbf{x}), \mathbf{y}) + (\lambda) \sum_{y_t \in \mathcal{C}} \mathcal{L}_{COS} \left(\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})_{y_t}, g(\mathbf{x}, y_t) \right)$ Alignment coeff.
PAG inducing term

• We develop an objective that induces PAG while disentangling it from adversarial training:

Cross-entropy loss $\mathcal{L}_{total}(\mathbf{x}, \mathbf{y}) = \mathcal{L}_{CE}(f_{\theta}(\mathbf{x}), \mathbf{y}) + (\lambda) \sum_{y_t \in \mathcal{C}} \mathcal{L}_{COS} \left(\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})_{y_t}, g(\mathbf{x}, y_t) \right)$ Alignment coeff. PAG inducing term

• Avoiding circular reasoning by:

• We develop an objective that induces PAG while disentangling it from adversarial training:

PAG inducing term

- Avoiding circular reasoning by:
 - $\checkmark\,$ Not training on (adversarially) perturbed images

• We develop an objective that induces PAG while disentangling it from adversarial training:

PAG inducing term

- Avoiding circular reasoning by:
 - $\checkmark\,$ Not training on (adversarially) perturbed images
 - $\checkmark\,$ Not regularizing the input-gradients norm

We develop an objective that induces PAG while disentangling it from adversarial training:

PAG inducing term

- Avoiding circular reasoning by:
 - ✓ Not training on (adversarially) perturbed images
 - ✓ Not regularizing the input-gradients norm

Requires access to $g(x, y_t)$ - ground-truth Perceptually Aligned Gradients.

TECHNION | S The Henry and Marilyn Taub Faculty of Computer Science

Approximating Perceptually Aligned Gradients

Obtaining $g(x, y_t)$

Obtaining $g(x, y_t)$

• The input-gradient of classification networks is $\nabla_x \log p(y|x)$

Obtaining $g(x, y_t)$

Ę

- The input-gradient of classification networks is $\nabla_x \log p(y|x)$
- The conditional score-function, modeled by conditional diffusion models is $\nabla_{x_t} \log p(x_t|y)$

Obtaining $g(x, y_t)$

- The input-gradient of classification networks is $\nabla_x \log p(y|x)$
- The conditional score-function, modeled by conditional diffusion models is $\nabla_{x_t} \log p(x_t|y)$ Unconditional diffusion • Applying the Bayes rule $\rightarrow \nabla_{x_t} \log p(y|x_t) = \nabla_{x_t} \log p(x_t|y) - \nabla_{x_t} \log p(x_t)$

Conditional diffusion

Obtaining $g(x, y_t)$

- The input-gradient of classification networks is $\nabla_x \log p(y|x)$
- The conditional score-function, modeled by conditional diffusion models is $\nabla_{x_t} \log p(x_t|y)$ Unconditional diffusion • Applying the Bayes rule $\rightarrow \nabla_{x_t} \log p(y|x_t) = \nabla_{x_t} \log p(x_t|y) - \nabla_{x_t} \log p(x_t)$ Conditional diffusion
- → Assuming $\log p(y|x) \approx \log p(y|x_t)$ for specific noise level *t*, approximate "ground-truth" PAG using Score Based Gradients (SBG)

Approximating Perceptually Aligned Gradients

Approximating Perceptually Aligned Gradients

Ē

Approximating Perceptually Aligned Gradients

Approximating Perceptually Aligned Gradients

Ē

Approximating Perceptually Aligned Gradients

Ę

Approximating Perceptually Aligned Gradients

 \rightarrow SBG performs meaningful perceptual modifications while maintaining the original image structure

Do Perceptually Aligned Gradients Imply Robustness?

Approach

Ē

Do Perceptually Aligned Gradients Imply Robustness?

Approach

Ē

1. Train classifiers with our proposed objective

Do Perceptually Aligned Gradients Imply Robustness?

Approach

Ę

- 1. Train classifiers with our proposed objective
- 2. Qualitatively verify that such models possess PAG

				C	IFAR-1	LO											STL					
Input	Plane	Car	Bird	Cat	Deer	Dog	Frog	Horse	Ship	Truck	Inpu	t P	Plane	Bird	Car	Cat	Deer	Dog	Horse	Ape	Ship	Truck
f.H	×	念		H	5		R	4 1		E PR		·	¥.,					(0.100) (0.100)			ep-tr Gronn	
1				B	X	0	(D)	10	J		n.aom		é-						n all			
-	1	-	8		¥.	13	œ.	Â	÷	19									Atabis			
200	×	5			-	1 2	37	R.														
	1		V	M	X	12			*	THE REAL											TRANK OF	
V	¥	Ô	Ý		1		5	PACE A	V	No. C												EIN
X	*		12	5		1	*	A.	- Aller					2					而是	1 B		

PAG visualizations using ResNet-18 on CIFAR-10 and STL.

Do Perceptually Aligned Gradients Imply Robustness?

Approach

Ę

- 1. Train classifiers with our proposed objective
- 2. Qualitatively verify that such models possess PAG
- 3. Evaluate the adversarial robustness of such models

Ę

Do Perceptually Aligned Gradients Imply Robustness?

Arch.	Method	Clean	AA L_2	AA L_{∞}	
	Vanilla	93.61	00.00	00.00	
DN 10	SBG	78.56	55.39	<u>23.97</u>	
RN-18					

CIFAR-10 results using ResNet-18.

Ę

Do Perceptually Aligned Gradients Imply Robustness?

Arch.	Method	Clean	AA L_2	AA L_{∞}	
	Vanilla	93.61	00.00	00.00	
DNI 10	SBG	78.56	55.39	<u>23.97</u>	
KIN-18	AT L_{∞}	82.49	<u>56.57</u>	37.59	
	AT L_2	<u>86.79</u>	60.82	19.63	

CIFAR-10 results using ResNet-18.

Ē

Do Perceptually Aligned Gradients Imply Robustness?

? Does this extends to different architectures?

Ę

Do Perceptually Aligned Gradients Imply Robustness?

✓ Does this extends to different architectures?

Arch.	Method	Clean	AA L_2	AA L_{∞}
	Vanilla	<u>80.51</u>	00.87	00.01
\/:T	SBG	81.28	57.80	<u>22.85</u>
VII	AT L_{∞}	62.20	42.80	24.62
	AT L_2	72.81	<u>42.99</u>	08.13

CIFAR-10 results using ViT.

Ē

Do Perceptually Aligned Gradients Imply Robustness?

? Does this extends to low-data regimes?

Ę

Do Perceptually Aligned Gradients Imply Robustness?

✓ Does this extends to low-data regimes?

Method	Clean	AA L_2	AA L_{∞}
Vanilla	82.60	00.00	00.00
SBG	<u>74.79</u>	65.96	43.53
AT L_{∞}	54.90	46.33	28.30
AT L_2	54.99	46.04	23.33

STL results using ResNet-18.

Ē

Do Perceptually Aligned Gradients Imply Robustness?

Does our method extends to datasets with more classes? ?

Ę

Do Perceptually Aligned Gradients Imply Robustness?

✔ Does our method extends to datasets with more classes?

Method	Clean	AA L_2	AA L_{∞}
Vanilla	74.36	00.00	00.00
SBG	55.94	<u>29.25</u>	<u>08.24</u>
AT L_{∞}	52.92	23.61	14.63
AT L_2	58.05	30.51	08.03

CIFAR-100 results using ResNet-18.

Conclusions

Ę

Do Perceptually Aligned Gradients Imply Robustness?

TECHNION | So The Henry and Marilyn Taub Faculty of Computer Science