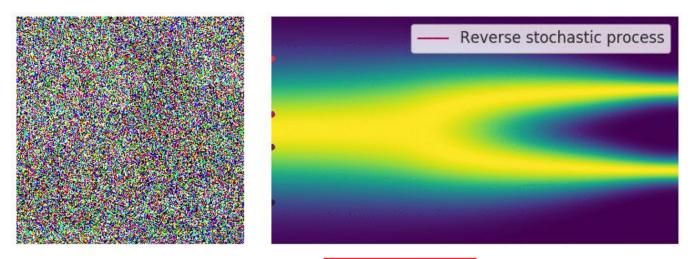
Reflected Diffusion Models

Aaron Lou, Stefano Ermon

Diffusion Models Recap



$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}, t) - g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\mathbf{B}_t$$

Minimize $\mathbb{E}_{\mathbf{x}_0 \sim p_0, \mathbf{x} \sim p_t(\cdot | \mathbf{x}_0)} \| \mathbf{s}_{\theta}(\mathbf{x}, t) - \nabla_x \log p_t(\mathbf{x} | \mathbf{x}_0) \|^2$

Divergent Sampling

$$\mathbf{x}_{t-\Delta t} = \mathbf{x}_t - \left[\mathbf{f}(\mathbf{x}_t, t) - g(t)^2 s_{\theta}(\mathbf{x}_t, t)\right] \Delta t + g(t) \mathbf{B}_{\Delta t}^t$$
Random Variable

Thresholding

$$\mathbf{x}_{t-\Delta t} = \underbrace{\mathbf{x}_{t} - \left[\mathbf{f}(\mathbf{x}_{t}, t) - g(t)^{2} s_{\theta}(\mathbf{x}_{t}, t)\right] \Delta t}_{\text{VAE Predicted Mean } \overline{\mathbf{x}}_{t-\Delta t}} + \underbrace{g(t) \mathbf{B}_{\Delta t}^{t}}_{\text{VAE Noise}}$$

diffusion_tf/diffusion_utils.py delivered with 💜 by emgithub

view raw

Imagen (2022)

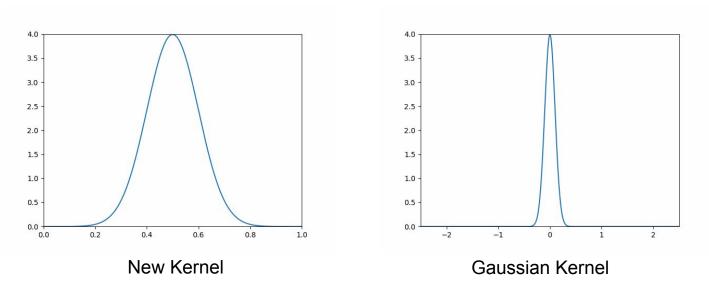
Reflected SDEs

$$\mathbf{x}_{t+\Delta t} = \operatorname{proj} \left(\mathbf{x}_t + \mathbf{f}(\mathbf{x}_t, t) \Delta t \right) + g(t) \mathbf{B}_{\Delta t}^t$$
$$\begin{vmatrix} \Delta t \to 0 \\ d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t) dt + g(t) d\mathbf{B}_t + d\mathbf{L}_t \end{vmatrix}$$

.

Reversing Reflected SDEs

$$d\mathbf{x}_{t} = \left[\mathbf{f}(\mathbf{x}_{t}, t) - g(t)^{2} \nabla_{x} \log p_{t}\right] dt + g(t) d\mathbf{B}_{t} + d\mathbf{L}_{t}$$
$$\mathbb{E}_{\mathbf{x}_{0} \sim p_{0}, \mathbf{x} \sim p_{t}(\cdot | \mathbf{x}_{0})} \|\mathbf{s}_{\theta}(\mathbf{x}, t) - \nabla_{x} \log p_{t}(\mathbf{x} | \mathbf{x}_{0})\|^{2}$$



Results

Method	Inception score (1)	
NCSN++[3]	9.89	
Subspace Diffusion [13]	9.99	
Ours	10.42	

Method	CIFAR-10 BPD (\downarrow)	ImageNet-32 BPD (↓)
ScoreFlow [10]	2.86	3.83
(with importance sampling)	2.83	3.76
VDM [15]	2.70	
(with learned noise)	2.65	3.72
Ours	2.68	3.74

Results (cont.)

Thresholding with high weight

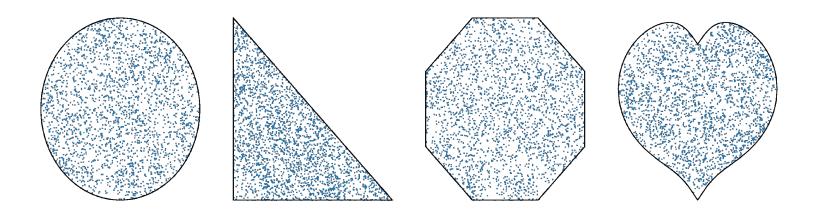
Ours with high weight

Results (cont.)

Sampled with far fewer steps. ~100 compared to ~1000

Generalizing Geometry

Our approach can generalize to other types of geometries, such as high dimensional simplices.



Takeaways and Conclusion

- Common sampling tricks have nice theoretical explanations.
- We can build a general framework that respects our data constraints.
- Method allows for further extensions (e.g. general geometries).

Check out our full paper for more information!

Code

@aaron_lou
@StefanoErmon