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2Motivation

Image generated by DALL·E2

DALL·E2: A. Ramesh, et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. arXiv:2204.06125, 2022; Video Diffusion Models: J. Ho, et al. “Video diffusion models”. NeurIPS 2022; WaveGrad: N. 
Chen et al. “WaveGrad: Estimating Gradients for Waveform Generation”. ICLR 2021

• Practical success of diffusion models in a wide range of data generating tasks

Video generated by Video Diffusion Models Visualization of WaveGrad (audio)
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• Practical success of diffusion models in a wide range of data generating tasks

Video generated by Video Diffusion Models Visualization of WaveGrad (audio)

• Theoretical understandings of diffusion models are limited
We analyze diffusion models as a distribution learner 
via statistical learning theory
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Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021
U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188–1205, 1986.

Formulation as SDE (Song et al., 2020)

…

𝑇

0𝑇
almost Gaussian

0

Brownian motion

(recovers the true data distribution)

Note:
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U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188–1205, 1986.

Formulation as SDE (Song et al., 2020)

0𝑇
almost Gaussian

…

0 𝑇

The exact value of the score                  cannot be obtained
because it depends on 

the score network, trained with finite sample

Brownian motion
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Continuous time (          ): Song et al. (2021); De Bortoli et al. (2021)
Discrete time (        ): ); De Bortoli et al. (2022); Lee et al. (2022a;b); Chen et al. (2023)
Non-quantitative bound under manifold assumption: Pidstrigach (2022)

Song et al.“Maximum likelihood training of score-based diffusion models”. NeurIPS 2021; Chen et al: “Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions”. ICLR 
2023.; Lee et al. “Convergence of score-based generative modeling for general data distributions.” NeurIPS 2022 Workshop on Score-Based Methods, 2022a.; Lee et al. “Convergence for score-based generative 
modeling with polynomial complexity”, NeurIPS 2022, 2022b.; De Bortoli et al. “Diffusion Schrödinger bridge with applications to score-based generative modeling”. NeurIPS 2021; De Bortoli et al. “Convergence of 
denoising diffusion models under the manifold hypothesis”. TMLR 2022.; Weed and Bach. “Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance”. Bernoulli, 
25(4A):2620–2648, 2019. Chen et al.: “Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data”. arXiv:2302.07194, 2023.

Existing work on error analysis

❖

❖

❖

• If          , we have 

(propagation of the score matching error and discretization error)
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W1 bound of 𝑛!"/$: De Bortoli et al. (2021)
• Estimation rate analysis

❖

• If          , we have 

(propagation of the score matching error and discretization error)

We do not know how small ε can be with 𝒏 training sample

Concurrent work (appeared after the submission of this work): Chen et al. (2023) ❖
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can structural assumptions on the data improve this bound?: this worku
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• A1:  𝑝! is supported on −1,1 ", upper and lower bounded in the support, and                                                

with 𝑠 > ⁄1 𝑝 − ⁄1 2 # as a density function on −1,1 ". 

A1

Problem settings
• Assume the true data belongs to some function space

Besov space
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• A1:  𝑝! is supported on −1,1 ", upper and lower bounded in the support, and                                                

with 𝑠 > ⁄1 𝑝 − ⁄1 2 # as a density function on −1,1 ". 

A1

• : Besov space        with the norm bounded by      (some constant)

Intuition:❖

A2 𝑝! is sufficiently smooth on the edge of 
the support

Very smooth

Besov space

Problem settings
• Assume the true data belongs to some function space



14Problem settings
• Select the network from a certain class so that it minimizes the empirical loss

Because , the minimizer can be computed   
only with 𝑛 finite sample  

❖

empirical score matching loss

This is equivalent to usual squared loss minimization + weight func.❖



15Problem settings
• Hypothesis network class: sparsity-constrainted deep ReLU networks

(depth) (sparsity-constraint; num. of non-zero params)(width) (magnitude)

J. Schmidt-Hieber. “Nonparametric regression using deep neural networks with Relu activation function.” The Annals of Statistics, 48(4):1875–1897, 2020.
T. Suzuki. “Adaptivity of deep Relu network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality”. ICLR 2019.

(Schmidt-Hieber, 2020; Suzuki, 2019)



16Problem settings

Besov space
with smoothness 𝑠

Sample 𝑛 data

Minimize the empirical score matching loss 
over a certain class of DNNs

Generate new data

Evaluate the discrepancy



17Main result ①: minimax optimality in TV

Theorem 1

under an appropriate choice of and    . 

The generated data distribution by using the score network that minimizes 
the empirical score matching loss over yields that 

This rate is the minimax optimal (up to polylog), because it also holds that

More formally,        is needed to be replaced by             for a technical reason.  
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19Basis decomposition tailored for score approximation

R. A. DeVore, & V. A. Popov. “Interpolation of Besov spaces.“ Transactions of the American Mathematical Society, 305(1):397–414, 1988.

• B-spline basis decomposition of                        :
B-spline basis(Devore & Popov, 1988)
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22Basis decomposition tailored for score approximation

R. A. DeVore, & V. A. Popov. “Interpolation of Besov spaces.“ Transactions of the American Mathematical Society, 305(1):397–414, 1988.

• Approximation of          :

Approximate in the same way and use❖

• B-spline basis decomposition of                        :
B-spline basis(Devore & Popov, 1988)

Approximated by NNs very 
efficiently (polylog size)

diffused B-spline basis

approximation via 
B-spline basis



23Main result ②: manifold hypothesis

J. B. Tenenbaum, V. D. Silva, & J. C. Langford. “A Global Geometric Framework for Nonlinear Dimensionality Reduction”, Science, 290(5500):2319–2323, 2000.

• The exponent of               depends on the dimension 𝑑 “curse of dimensionality”



24Main result ②: manifold hypothesis

Assume that 𝑝! lies on a -dimensional plane

• Density function 𝑞! on the canonical coordinate 
system on the plane belongs to

J. B. Tenenbaum, V. D. Silva, & J. C. Langford. “A Global Geometric Framework for Nonlinear Dimensionality Reduction”, Science, 290(5500):2319–2323, 2000.

• The exponent of               depends on the dimension 𝑑 “curse of dimensionality”

• Real-world data has intrinsic low-dimensionality (e.g., Tenenbaum et al., 2000)
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27Main result ②: manifold hypothesis
Theorem 2
Based on , we can train the score network      that satisfies

( arbitrarily fixed constant)

More formally,        is needed to be replaced by             for a technical reason.  

• Diffusion models can avoid the curse of dimensionality

projectionDiffusion on the manifold

• Key idea: decomposition of the score

• Even when 𝑑$ = 𝑑, the rate in W1 is faster than that in TV( )
additional techniques are required



28Summary
• Revealed the power of diffusion modeling as a distribution estimator

the true distribution belongs to❖

and the score network minimize the empirical loss over a certain class of DNNs❖
(𝑠: smoothness)
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• Revealed the power of diffusion modeling as a distribution estimator

the true distribution belongs to❖

and the score network minimize the empirical loss over a certain class of DNNs❖
(𝑠: smoothness)

• Proved that diffusion models can achieve the minimax optimal estimation rates
TV distance:❖

Diffused B-spline basis decompositionu

W1 distance:❖

Analysis under the manifold hypothesisu

Avoid the curse of dimensionalityu


