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Motivation :

* Practical success of diffusion models in a wide range of data generating tasks
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Image generated by DALL-E2 Video generated by Video Diffusion Models  Visualization of WaveGrad (audio)

DALL-E2: A. Ramesh, et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. arXiv:2204.06125, 2022; Video Diffusion Models: J. Ho, et al. “Video diffusion models”. NeurlPS 2022; WaveGrad: N.

Chen et al. “WaveGrad: Estimating Gradients for Waveform Generation”. ICLR 2021
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Visualization of WaveGrad (audio)

 Theoretical understandings of diffusion models are limited

We analyze diffusion models as a distribution learner
via statistical learning theory

DALL-E2: A. Ramesh, et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. arXiv:2204.06125, 2022; Video Diffusion Models: J. Ho, et al. “Video diffusion models”. NeurlPS 2022; WaveGrad: N.

Chen et al. “WaveGrad: Estimating Gradients for Waveform Generation”. ICLR 2021



FormUIation as SDE (Song et al., 2020) !

almost Gaussian

, dY; = (Y; +2Vilogp+=_,(Y;))dt + v2d By

Brownian motion

m=p Y ~ Do (recovers the true data distribution)

Note: | ” 2
L — Uy
pi(x) = | poly)————Fexp | — dy

(me=¢e* of =1—e%)

Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021

U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188—1205, 1986.
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Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021

U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188—1205, 1986.
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~po,  dYy = (Y; +2Viogpp_,(Yy))dt + v2d B,

Brownian motion

The exact value of the re Vlogp:(z) cannot be obtained
because it depends on

dY; = (Y; + 28(Y;, T — t))dt + v2d B,

the score network, trained with finite sample

Y. Song et al. “Score-based generative modeling through stochastic differential equations”. ICLR 2021

U. G. Haussmann & E. Pardoux. “Time Reversal of Diffusions”. The annals of Probability, 14(4): 1188—1205, 1986.




Existing work on error analysis 7

I | Ex,p, [5(Xe, t) — Viogpy(X)|*dt < e, we have TV(Y 9,X ) < poly(e,n,d)
t
(propagation of the score matching error and discretization error)

+ Continuous time (nn =0): Song et al. (2021); De Bortoli et al. (2021)
+ Discrete time (n>0): ); De Bortoli et al. (2022); Lee et al. (2022a;b); Chen et al. (2023)

+ Non-quantitative bound under manifold assumption: Pidstrigach (2022)

Song et al.“Maximum likelihood training of score-based diffusion models”. Neur/PS 2021; Chen et al: “Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions”. ICLR
2023.; Lee et al. “Convergence of score-based generative modeling for general data distributions.” NeurlPS 2022 Workshop on Score-Based Methods, 2022a.; Lee et al. “Convergence for score-based generative
modeling with polynomial complexity”, NeurlPS 2022, 2022b.; De Bortoli et al. “Diffusion Schrédinger bridge with applications to score-based generative modeling”. NeurlPS 2021; De Bortoli et al. “Convergence of

denoising diffusion models under the manifold hypothesis”. TMLR 2022.; Weed and Bach. “Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance”. Bernoull,
25(4A):2620—2648, 2019. Chen et al.: “Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data”. arXiv:2302.07194, 2023.
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We do not know how small £ can be with n training sample

Song et al.“Maximum likelihood training of score-based diffusion models”. Neur/PS 2021; Chen et al: “Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions”. ICLR
2023.; Lee et al. “Convergence of score-based generative modeling for general data distributions.” NeurlPS 2022 Workshop on Score-Based Methods, 2022a.; Lee et al. “Convergence for score-based generative

modeling with polynomial complexity”, NeurlPS 2022, 2022b.; De Bortoli et al. “Diffusion Schrédinger bridge with applications to score-based generative modeling”. NeurlPS 2021; De Bortoli et al. “Convergence of
denoising diffusion models under the manifold hypothesis”. TMLR 2022.; Weed and Bach. “Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance”. Bernoull,
25(4A):2620—2648, 2019. Chen et al.: “Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data”. arXiv:2302.07194, 2023.
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- Estimation rate analysis
+ W1 bound of n=/¢: De Bortoli et al. (2021)

+* Concurrent work (appeared after the submission of this work). Chen et al. (2023)

Song et al.“Maximum likelihood training of score-based diffusion models”. Neur/PS 2021; Chen et al: “Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions”. ICLR
2023.; Lee et al. “Convergence of score-based generative modeling for general data distributions.” NeurlPS 2022 Workshop on Score-Based Methods, 2022a.; Lee et al. “Convergence for score-based generative
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: |f/EXt~pt[||3(Xt,t) — Vlog p(X,)||?)dt < e, we have TV (Y 0,X ) < poly(e,n,d)
t
(propagation of the score matching error and discretization error)

+ Continuous time (nn =0): Song et al. (2021); De Bortoli et al. (2021)
+ Discrete time (n>0): ); De Bortoli et al. (2022); Lee et al. (2022a;b); Chen et al. (2023)

+ Non-quantitative bound under manifold assumption: Pidstrigach (2022)

We do not know how small £ can be with n training sample

- Estimation rate analysis
+ W1 bound of n=/¢: De Bortoli et al. (2021)
¢ can structural assumptions on the data improve this bound?: this work
+* Concurrent work (appeared after the submission of this work). Chen et al. (2023)

Song et al.“Maximum likelihood training of score-based diffusion models”. Neur/PS 2021; Chen et al: “Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions”. ICLR
2023.; Lee et al. “Convergence of score-based generative modeling for general data distributions.” NeurlPS 2022 Workshop on Score-Based Methods, 2022a.; Lee et al. “Convergence for score-based generative

modeling with polynomial complexity”, NeurlPS 2022, 2022b.; De Bortoli et al. “Diffusion Schrédinger bridge with applications to score-based generative modeling”. NeurlPS 2021; De Bortoli et al. “Convergence of
denoising diffusion models under the manifold hypothesis”. TMLR 2022.; Weed and Bach. “Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance”. Bernoull,
25(4A):2620—2648, 2019. Chen et al.: “Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data”. arXiv:2302.07194, 2023.




Problem settings :

« Assume the true data belongs to some function space

po is supported on [—1,1]¢, upper and lower bounded in the support, and

S
Po € Bp,q,C

with s > (1/p — 1/2), as a density function on [—1,1]¢.
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Problem settings °

« Assume the true data belongs to some function space

po is supported on [—1,1]¢, upper and lower bounded in the support, and

S
Po € Bp,q,C

with s > (1/p — 1/2), as a density function on [—1,1]¢.

* B, - Besov space B, , with the norm bounded by ' (some constant)

< Intuition: HfHst%q(Q) — HfHLP(Q) -+ HDSfHLp(Q)

po is sufficiently smooth on the edge of Very smooth

the support [-1, 1]\ [-1+n~"7 ,1—n~"7 |<

Besov space




Problem settings :

 Select the network from a certain class so that it minimizes the empirical loss

1 n

argmin _E '
s€S: DNNs n “ ]
1=

[ Eximtixume 15X ) = Vlog (Xl Xo = w:) 1t
L ii.
25 PR ~f po empirical score matching loss

+ Because p:(X¢| Xo = z;) = N(e tz;, 1 — e "), the minimizer can be computed
only with n finite sample

* This is equivalent to usual squared loss minimization + weight func.

)|

1 <&
BN Z ()|, ti) — V log pr, (1,4



Problem settings *

- Hypothesis network class: sparsity-constrainted deep ReLU networks
S ( L (depth) W(width) : S (sparsity-constraint; num. of non-zero params)7 B (magnitude))

= {(A"ReLU())+b")o - o(ATz+b1)[ A" € R*™ 1 b € RV, [lw||o < W,
L
> (Ao + 1°]l0) < S, max [ A]lo V [Vl < B

i=1 } (Schmidt-Hieber, 2020; Suzuki, 2019)

J. Schmidt-Hieber. “Nonparametric regression using deep neural networks with Relu activation function.” The Annals of Statistics, 48(4):1875—1897, 2020.

T. Suzuki. “Adaptivity of deep Relu network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality”. /ICLR 2019.



Problem settings .

Evaluate the discrepancy

A

S
Po Y=

Besov space
with smoothness s

—1 1

dY; = (Y; + 2V log p_,(V3))dt nerate new dat
Sampleﬁ1 data Vs Generate new data
L1, " ,Tn ~ PO

Minimize the empirical score matching loss
over a certain class of DNNs

: 1
argmin E o X, 1) — V] X, X, = z,)||2]dt
SESngNNs nz {/t Xtht(Xt|X0—xz)[”8( t ) \% ngt( tl 0= )” ] ]

=1

_




Main result O: minimax optimality in TV

(Theorem 1

The generated data distribution by using the score network S that minimizes
the empirical score matching loss over S(L, W, S, B) yields that

i}, [TV(?T7 XO)] Sno

S

+d log8 n

under an appropriate choice of T, L, W, S and B.

This rate is the minimax optimal (up to polylog), because it also holds that

n~ 2std < inf sup 43{x. n_ [TV(,&,XO)].
" e : 3 2 1=
pr:estimator p o GBP,%C

More formally, YT is needed to be replaced by fL_T for a technical reason.
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Basis decomposition tailored for score approximati@n 1

- B-spline basis decomposition of Po (€ B . c): Z oj M .7 i (

(Devore & Popov, 1988) B- Splme basis

R. A. DeVore, & V. A. Popov. “Interpolation of Besov spaces.“ Transactions of the American Mathematical Society, 305(1):397—414, 1988.




Basis decomposition tailored for score approximati@n 2

- B-spline basis decomposition of Po (€ B . c): Z oj M o i (

(Devore & Popov, 1988) B- Splme basis

- Approximation of p:(z):

pe(x) =/po(y) - —_exp (_le—u;y|\2>dy

ol (2m)2 207
approximation vial ~ ~ _

B-spline basis =:Ky(xz|y)

N
~Y / MY, (y) Kr(z]y)dy
j=1 |

R. A. DeVore, & V. A. Popov. “Interpolation of Besov spaces.“ Transactions of the American Mathematical Society, 305(1):397—414, 1988.




Basis decomposition tailored for score approximati@n !

. . . d
- B-spline basis decomposition of po(€ B, , ¢): E oy MG s (
(Devore & Popov, 1988) B- Spllne basis

- Approximation of p:(x): ,
_ i i — pus
pt(x) — pO(y) d )g CXp | — 2 dy
‘ 2

| of(2m 20}
approximation via Ko (aly) Approximated by NNs very
B-spline basis efficiently (polylog size)

~3 i [ M ) Eilely)ay /

=: Fyj pi(2,1) diffused B-spline basis

R. A. DeVore, & V. A. Popov. “Interpolation of Besov spaces.“ Transactions of the American Mathematical Society, 305(1):397—414, 1988.




Basis decomposition tailored for score approximati@n 2

« B-spline basis decomposition of po(€ BS p.q. C - Z Q. Mffg bg

(Devore & Popov, 1988) B- Splme basis

- Approximation of p:(z):

pla) = [ o) ——— e (—"x‘“;y”2)dy

d d 2
) of(2m)2 op
approximation via Ko (aly) Approximated by NNs very
B-spline basis efficiently (polylog size)

~3 i [ M ) Eilely)ay /

=: Fyj pi(2,1) diffused B-spline basis

Vpi(z)
pe(T)

+ Approximate Vp;(z) in the same way and use V log p;(z) =

R. A. DeVore, & V. A. Popov. “Interpolation of Besov spaces.“ Transactions of the American Mathematical Society, 305(1):397—414, 1988.




Main result @: manifold hypothesis . =

* The exponent of n~ 2+d depends on the dimension d “curse of dimensionality”

J. B. Tenenbaum, V. D. Silva, & J. C. Langford. “A Global Geometric Framework for Nonlinear Dimensionality Reduction”, Science, 290(5500):2319-2323, 2000.




Main result @: manifold hypothesis .

* The exponent of n~ 2+d depends on the dimension d “curse of dimensionality”

» Real-world data has intrinsic low-dimensionality (e.g., Tenenbaum et al., 2000)

4 )

Assume that p, lies on a d'-dimensional plane (d' < d)

R W qo(a:)
4+ * Density function g, on the canonical coordinate

z € R system on the plane belongs to p.a,C

J. B. Tenenbaum, V. D. Silva, & J. C. Langford. “A Global Geometric Framework for Nonlinear Dimensionality Reduction”, Science, 290(5500):2319-2323, 2000.




Main result @: manifold hypothesis .

Based on {z;}"™_,, we can train the score network S that satisfies
s+1—96

4:{5137: i—1 [Wl(f/Tv XO)} rg no 2std,

(6(> 0): arbitrarily fixed constant)

More formally, YT is needed to be replaced by fL_T for a technical reason.
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Main result @: manifold hypothesis L

Based on {z;}"™_,, we can train the score network S that satisfies
s+1—96

<I:{5137: i—1 [Wl(f/Tv XO)} 5 no 2std,

(6(> 0): arbitrarily fixed constant)

 Diffusion models can avoid the curse of dimensionality

- Key idea: decomposition of the score

1
Vlogpi(x) = Vloggi(A' x) — g(f —A)(I - ANz

t
Diffusion on the manifold A" : projection

« Even when d' = d, the rate in W1 is faster than that in TV(n 25 7 )
=) additional techniques are required

More formally, YT is needed to be replaced by YL_T for a technical reason.
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Summary .

- Revealed the power of diffusion modeling as a distribution estimator
+ the true distribution belongs to B, . -~ (s: smoothness)
< and the score network minimize the empirical loss over a certain class of DNNs

* Proved that diffusion models can achieve the minimax optimal estimation rates
» TV distance: n~ 2-+d
+ Diffused B-sp!sim? basis decomposition
<« W1 distance: n 2s+d’

¢ Analysis under the manifold hypothesis

¢ Avoid the curse of dimensionality



