Superhuman Fairness

Omid Memarrast, Linh Vu, Brian D. Ziebart

University of Illinois Chicago

Motivation

Defining desired fairness trade-offs precisely is difficult

• Multiple fairness metrics [dp, eqodds, eqopp, prp, ...]

A new perspective: Multiple stakeholders

 with different notions of fairness and desired performance-fairness trade-offs

Example

- Admission: [CS department, Civil department, ..]
- Each department: Their own perception of fairness

Solution:

Instead of optimal fairness, **outperform humans** across many metrics

metrics $f_1, f_2, ...$

metrics f_1, f_2, \dots

Pareto frontier

metrics f₁, f₂, ... human demonstrations

Pareto frontier

A **policy** is **superhuman** if it has smaller **metrics** $f_1, f_2, ...$ for all **human demonstrations**

Pareto frontier

A **policy** is **superhuman** if it has smaller **metrics** $f_1, f_2, ...$ for all **human demonstrations**

Guarantees <u>lower cost</u> than demonstration costs for family of additive trade-offs

Pareto frontier

A **policy** is **superhuman** if it has smaller **metrics** $f_1, f_2, ...$ for all **human demonstrations**

Guarantees <u>lower cost</u> than demonstration costs for family of additive trade-offs

Set of **superhuman policies** on the **Pareto frontier** shrinks as demonstrations grow

A **policy** is **superhuman** if it has smaller **metrics** $f_1, f_2, ...$ for all **human demonstrations**

Guarantees <u>lower cost</u> than demonstration costs for family of additive trade-offs

Set of **superhuman policies** on the **Pareto frontier** shrinks as demonstrations grow

A **policy** is **superhuman** if it has smaller **metrics** $f_1, f_2, ...$ for all **human demonstrations**

Guarantees <u>lower cost</u> than demonstration costs for family of additive trade-offs

Set of **superhuman policies** on the **Pareto frontier** shrinks as demonstrations grow

Imparity

Can become empty!

A **policy** is **\gamma-superhuman** if it has smaller **metrics** $f_1, f_2, ...$ than $\gamma\%$ of **human demonstrations**

A **policy** is **\gamma-superhuman** if it has smaller **metrics** $f_1, f_2, ...$ than γ % of **human demonstrations**

A **policy** is **\gamma-superhuman** if it has smaller **metrics** $f_1, f_2, ...$ than $\gamma\%$ of **human demonstrations**

Subdominance measures how far a policy is from superhuman by some margins

Pareto frontier

A **policy** is **\gamma-superhuman** if it has smaller **metrics** $f_1, f_2, ...$ than $\gamma\%$ of **human demonstrations**

Subdominance measures how far a policy is from superhuman by some margins

Minimally subdominant policy tends to reside close to the Pareto frontier

A **policy** is **\gamma-superhuman** if it has smaller **metrics** $f_1, f_2, ...$ than $\gamma\%$ of **human demonstrations**

Subdominance measures how far a policy is from superhuman by some margins

Minimally subdominant policy tends to reside close to the Pareto frontier

Subdominance bounds the superhuman percentile

$$\hat{\mathbf{y}} = \{\hat{y}_j\}_{j=1}^{\mathsf{M}}$$
 $ilde{\mathbf{y}}$
Model Predictions

$$ilde{\mathbf{y}} = \{ ilde{y}_j\}_{j=1}^{\mathrm{M}}$$
demonstrations

The minimally subdominant policy:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \min_{\boldsymbol{\alpha} \succeq 0} \mathbb{E}_{\hat{\mathbf{y}} | \mathbf{X} \sim P_{\boldsymbol{\theta}}} \left[\operatorname{subdom}_{\boldsymbol{\alpha}} \left(\hat{\mathbf{y}}, \tilde{\boldsymbol{\mathcal{Y}}}, \mathbf{y}, \mathbf{a} \right) \right] + \lambda \| \boldsymbol{\alpha} \|_{1}$$

θ: Model parameter

α: Sensitivity to underperform demonstrations

If we have metrics inacc, dp, eqodds:

subdom_{α} = α_{inacc} subdom_{inacc} + α_{dp} subdom_{dp} + α_{eqodds} subdom_{eqodds}

Experiments

Metrics: (In)Accuracy (Prediction error)

VS

[DP, EqOdds, PRP]

Thank you!

