



# UPop: Unified and Progressive Pruning for Compressing Vision-Language Transformers

Dachuan Shi<sup>1,2</sup>, Chaofan Tao<sup>3</sup>, Ying Jin<sup>4</sup>, Zhendong Yang<sup>1</sup>, Chun Yuan<sup>1,™</sup> Jiaqi Wang<sup>2,™</sup>

<sup>1</sup>Tsinghua University, <sup>2</sup>Shanghai Al Laboratory

<sup>3</sup>The University of Hong Kong, <sup>4</sup>The Chinese University of Hong Kong





上海人工智能实验室 Shanghai Artificial Intelligence Laboratory



### Task: Compressing Vision-Language Transformers



## Task: Compressing Vision-Language Transformers

#### Vector-level structured





#### (a) Remove entire rows

#### (b) Remove entire columns

### Motivation: Unified and Progressive Pruning



Question1: How to assign compression ratios? Unified Search: From manually to adaptively.

Question2: How to prune weights from original models? Progressive Pruning: Eliminate the weight gap.





It's fine. We just need some patience.





: So tedious. I am worn out.





Unified search enables adaptive assignment !: 😎





: Rescued from the burden of repeated trials !

## How to prune 50% weights from original models?





Weight gap between the searched model and pruned model ? :

# How to prune 50% weights from original models?





Nice try! How about further improved progressive pruning? :

# How to prune 50% weights from original models?

Progressive pruning eliminates the weight gap!:





: Cheers to doggy still being doggy after pruning!

#### **Overall Performance**

| Method             | Visual<br>Reason                | Image<br>Caption     | Visual<br>QA          | Retrie<br>COCO        | eval<br>Flickr        | Image Cla-<br>ssification |
|--------------------|---------------------------------|----------------------|-----------------------|-----------------------|-----------------------|---------------------------|
| Original Model     | 83.1                            | 23.8                 | 77.5                  | 81.9                  | 96.8                  | 79.9                      |
| Mask-based Pruning | 76.4 <sub>↓6.7</sub>            | 21.0 <sub>↓2.8</sub> | 71.6 <sub>↓5.9</sub>  | 61.7 <mark>↓20</mark> | 78.9 <mark>↓18</mark> | 77.9 <sub>↓2.0</sub>      |
| UPop (Ours)        | <b>81.1</b> $_{\downarrow 2.0}$ | <b>23.3</b> ↓0.5     | 76.3 $\downarrow$ 1.2 | <b>77.4</b> ↓4.5      | <b>94.0</b> ↓2.8      | <b>78.9</b> ↓1.0          |

At  $2 \times$  compression for example. All metrics are the higher the better.

#### Also competitive on uni-modal tasks



UPop (marked with the blue triangle) achieves better performance on both Accuracy-FLOPs and Accuracy-Parameter trade-offs.

# UPop: Unified and Progressive Pruning for Compressing Vision-Language Transformers



Link to paper

Link to code

Link to website

Please refer to above links for more details.