

Image generation with Shortest-path Diffusion

Ayan Das^{*}, Stathi Fotiadis^{*}, Anil Batra, Farhang Nabiei, FengTing Liao, Sattar Vakili, Da-Shan Shiu, Alberto Bernacchia (* Equal Contributions)

MediaTek Research https://www.mtkresearch.com/

MediaTek Proprietary and Confidential. © 2022 MediaTek Inc. All rights reserved.

Introduction to Diffusion Models

Increasingly popular class of Generative Model

Two primary components:

- $\begin{array}{ll} & \underline{\text{Reverse/Generative process}}\\ & \text{Going from } \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ to data in } distribution space} \end{array}$
- Forward/Noising process
 Specifies the exact "path" of travel

Forward specification

- By far, dominantly hand designed
- Requires trial-and-error to find optimal path

Shortest path between distributions

G Shortest path between two Gaussians

D Fisher metric $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_0) \rightarrow \mathcal{N}(\mathbf{0}, \mathbf{I})$

Keeps maximum overlap between subsequent distributions

$$\Sigma_t = \Sigma_0^{1-t}$$
 , $t \in [0,1]$

MEDIATER

Modelling the covariance of natural images

 $\sim \frac{1}{f^2}$

- **D** Translation invariant $\Sigma_0 = FDF^H$
- Power spectrum^[1]
- We model D as

$$D_{ii} = \frac{c_1}{|c_2 + f_i|^m}$$

Implementation in Fourier space

$$u_t = \Psi_t^{1/2} u_0 + (I - \Psi_t)^{1/2} \xi_t$$

 $\Psi_t = \left(\boldsymbol{I} - \boldsymbol{D}^{1-t/T} \right) (\boldsymbol{I} - \boldsymbol{D})^{-1}$

[1] Hyvarinen, Huri & Hoyer, Natural Image Statistics (2009)

Experimental setup

Datasets:

CIFAR10 (32x32) & ImageNet (64x64)

- Representative of "Natural images"
- Roughly holds the *translation invariant* assumption

Setup (for fair comparison)

- Same UNet architecture as iDDPM [1]
- Same optimizer and learning rate as [1]
- Analogous reverse process variance for sampling

Evaluation

Computes FID with 50K samples

[1] Nichol, A. Q. and Dhariwal, P. "Improved denoising diffusion probabilistic model", ICML 2021

Only difference: Our estimated non-uniform forward noising schedule Ψ_t

CIFAR10 results

G FID is lowest on the Shortest path

- Lowest point is at T = 500
- Surpasses vanilla iDDPM

Our power spectrum model

- Found m = 2 to be optimal
- Corresponds to "sharpening" rather than "blurring" ..
 .. as suggested by [1] & [2]

Methods	FID
Soft Diffusion	4.64
Blurring Diffusion	3.17
SPD (Ours)	2.74

Daras, G., Delbracio, M., Talebi, H., Dimakis, A. G., and Milanfar, P. "Soft diffusion: Score matching for general corruptions", 2022.
 Hoogeboom, E. and Salimans, T., "Blurring diffusion models", ICLR 2023

ImageNet64 results

Preliminary experiments are promising

- Unconditional model trained (and samples) with T = 1000
- Better FID than iDDPM with less T and training iterations

Methods	Diffusion steps	Training steps	FID	
iDDPM	4000	1.5M	19.2	
SPD (Ours)	1000	1 M	13.7	

Quantitative results

Generated samples from SPD (Ours)

Thank you

Read the paper, or checkout our code \rightarrow

mtkresearch/shortest-path-diffusion

