Exponential Smoothing for Off-Policy Learning

Imad Aouali¹², Victor-Emmanuel Brunel², David Rohde¹, Anna Korba²

¹Criteo Al Lab ²CREST, ENSAE, Institut Polytechnique de Paris

International Conference on Machine Learning 2023

Off-Policy Contextual Bandits

Interactions: For any $i \in [n]$

- Observe context x_i ~ ν
- Take action $a_i \sim \pi_0(\cdot \mid x_i), \pi_0$ is the logging policy
- Receive cost $c_i \sim p(\cdot \mid x_i, a_i)$.

Off-Policy Contextual Bandits

Interactions: For any $i \in [n]$

- Observe context x_i ∼ ν
- Take action $a_i \sim \pi_0(\cdot \mid x_i), \pi_0$ is the logging policy
- Receive cost $c_i \sim p(\cdot \mid x_i, a_i)$.

Performance metric: The risk of a policy π is defined as

$$R(\pi) = \mathbb{E}_{x \sim \nu, \mathbf{a} \sim \pi(\cdot|x)} \left[c(x, \mathbf{a}) \right] \,,$$

where $x \in \mathcal{X}$ is a context, $a \in \mathcal{A}$ is an action, and c(x, a) = -r(x, a) is the expected cost (negative reward) of (x, a).

Off-Policy Contextual Bandits

Tasks: Given $\mathcal{D}_n = (x_i, a_i, c_i)_{i \in [n]}$, where (x_i, a_i, c_i) are i.i.d.

• Off-Policy Evaluation (OPE): Build an estimator of $R(\pi)$

$$\hat{R}_n(\pi) = f(\pi, \mathcal{D}_n) \approx R(\pi).$$

• Off-Policy Learning (OPL): Find $\hat{\pi}_n$, $R(\hat{\pi}_n) \approx \min_{\pi \in \Pi} R(\pi)$

$$\hat{\pi}_n = \operatorname*{arg\,min}_{\pi} \hat{R}_n(\pi) + \operatorname{pen}(\pi) \approx \pi_* \,,$$

where $\pi_* = \arg \min_{\pi} R(\pi)$.

Inverse Propensity Scoring (IPS) estimates the risk $R(\pi)$ such as

$$\hat{R}_n^{ ext{\tiny IPS}}(\pi) = rac{1}{n}\sum_{i=1}^n w_\pi(a_i|x_i)c_i\,,$$

where $w_{\pi}(a|x) = \frac{\pi(a|x)}{\pi_0(a|x)}$ are the importance weights.

Inverse Propensity Scoring (IPS) estimates the risk $R(\pi)$ such as

$$\hat{R}_{n}^{\text{IPS}}(\pi) = \frac{1}{n} \sum_{i=1}^{n} w_{\pi}(a_{i}|x_{i})c_{i},$$

where $w_{\pi}(a|x) = \frac{\pi(a|x)}{\pi_0(a|x)}$ are the **importance weights**.

Problem: Large variance when π is different from π_0 .

Inverse Propensity Scoring (IPS) estimates the risk $R(\pi)$ such as

$$\hat{R}_n^{\text{\tiny IPS}}(\pi) = \frac{1}{n} \sum_{i=1}^n w_{\pi}(a_i | x_i) c_i ,$$

where $w_{\pi}(a|x) = \frac{\pi(a|x)}{\pi_0(a|x)}$ are the **importance weights**.

Problem: Large variance when π is different from π_0 .

Common Solution: Hard clipping with $\tau \in [0, \infty)$,

$$w_{\pi}(a|x) \leftarrow \min\left(\tau, \frac{\pi(a|x)}{\pi_0(a|x)}\right).$$

Our Proposal: Exponential smoothing with $\alpha \in [0, 1]$,

$$w_{\pi}(a|x) \leftarrow rac{\pi(a|x)}{\pi_0(a|x)^{lpha}}$$

$$\min(au,rac{\pi(a|\mathbf{x})}{\pi_0(a|\mathbf{x})})\,,\quad au\in\mathbb{R}^+$$
 $rac{\pi(a|\mathbf{x})}{\pi_0(a|\mathbf{x})^lpha}\,,\quadlpha\in[0,1]$

(1) τ in an unbounded domain \mathbb{R}^+ (2) $\min(\tau, \frac{\pi(a|\mathbf{x})}{\pi_0(a|\mathbf{x})})$ is non-differentiable in π (3) $\min(\tau, \frac{\pi(a|\mathbf{x})}{\pi_0(a|\mathbf{x})})$ is bounded (1) α in a bounded domain [0, 1](2) $\frac{\pi(a|x)}{\pi_0(a|x)^{\alpha}}$ is differentiable and linear in π (3) $\frac{\pi(a|x)}{\pi_0(a|x)^{\alpha}}$ is unbounded

Other corrections were proposed, but ours simultaneously allows

(1) easier tuning of $\alpha \in [0, 1]$, (2) differentiable objectives,

(3) smaller bias as the corrected importance weights are not constrained to be bounded.

PAC-Bayes formulation: $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{A}\}$ is a hypothesis space. Then, policies are defined as^a

$$\pi(a|x) = \pi_{\mathbb{Q}}(a|x) = \mathbb{P}_{h \sim \mathbb{Q}}(h(x) = a) = \mathbb{E}_{h \sim \mathbb{Q}}[\mathbb{I}_{h(x)=a}].$$

^aBen London and Ted Sandler. "Bayesian counterfactual risk minimization". In: *International Conference on Machine Learning*. PMLR. 2019, pp. 4125–4133.

¹O. Sakhi, N. Chopin, and P. Alquier. "PAC-Bayesian Offline Contextual Bandits With Guarantees". In: *ICML* (2023).

PAC-Bayes formulation: $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{A}\}$ is a hypothesis space. Then, policies are defined as^a

$$\pi(a|x) = \pi_{\mathbb{Q}}(a|x) = \mathbb{P}_{h \sim \mathbb{Q}}(h(x) = a) = \mathbb{E}_{h \sim \mathbb{Q}}[\mathbb{I}_{h(x)=a}].$$

^aBen London and Ted Sandler. "Bayesian counterfactual risk minimization". In: *International Conference on Machine Learning*. PMLR. 2019, pp. 4125–4133.

- This is not an assumption¹.
- Softmax, mixed-logit, and Gaussian policies have this form.
- Suitable for PAC-Bayes:
 - We control $|\mathbb{E}_{h\sim\mathbb{Q}}[\hat{R}_n(h) R(h)]|$.
 - Given a prior P (e.g., π₀ = π_P), learn a posterior Q that minimizes the expected risk E_{h~Q}[R(h)].

¹O. Sakhi, N. Chopin, and P. Alquier. "PAC-Bayesian Offline Contextual Bandits With Guarantees". In: *ICML* (2023).

We derive tight and tractable PAC-Bayesian bounds under our estimator:

$$|R(\pi_{\mathbb{Q}}) - \hat{R}^{lpha}_{n}(\pi_{\mathbb{Q}})| \leq \mathcal{O}\Big(rac{D_{ ext{KL}}(\mathbb{Q}||\mathbb{P}) + ar{V}^{lpha}_{n}(\pi_{\mathbb{Q}})}{\sqrt{n}} + B^{lpha}_{n}(\pi_{\mathbb{Q}})\Big)\,,$$

where

•
$$\hat{R}^{\alpha}_{n}(\pi_{\mathbb{Q}}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi_{\mathbb{Q}}(a_{i}|x_{i})}{\pi_{0}(a_{i}|x_{i})^{\alpha}} c_{i}, \qquad \forall \alpha \in [0,1].$$

- $\pi_0 = \pi_{\mathbb{P}}$.
- $B_n^{\alpha}(\pi_{\mathbb{Q}})$ is a bias term.
- $\bar{V}_n^{\alpha}(\pi_{\mathbb{Q}})$ is a variance term.

We derive tight and tractable PAC-Bayesian bounds under our estimator:

$$|R(\pi_{\mathbb{Q}}) - \hat{R}^{lpha}_{n}(\pi_{\mathbb{Q}})| \leq \mathcal{O}\Big(rac{D_{ ext{KL}}(\mathbb{Q}||\mathbb{P}) + ar{V}^{lpha}_{n}(\pi_{\mathbb{Q}})}{\sqrt{n}} + B^{lpha}_{n}(\pi_{\mathbb{Q}})\Big)\,,$$

where

•
$$\hat{R}_n^{\alpha}(\pi_{\mathbb{Q}}) = \frac{1}{n} \sum_{i=1}^n \frac{\pi_{\mathbb{Q}}(a_i|x_i)}{\pi_0(a_i|x_i)^{\alpha}} c_i$$
, $\forall \alpha \in [0, 1]$

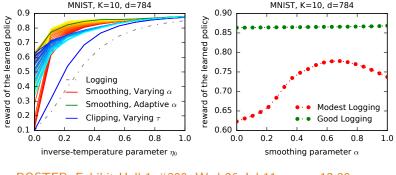
- $\pi_0 = \pi_{\mathbb{P}}$.
- $B_n^{\alpha}(\pi_{\mathbb{Q}})$ is a bias term.
- $\bar{V}_n^{\alpha}(\pi_{\mathbb{Q}})$ is a variance term.

Grounded and data-adaptive principle to simultaneously optimize $\alpha \in [0,1]$ and $\mathbb{Q} \in \mathcal{M}_1(\mathcal{H})$ as

$$\arg\min_{\mathbb{Q}\in\mathcal{M}_{1}(\mathcal{H}),\alpha\in[0,1]}\hat{R}_{n}^{\alpha}(\pi_{\mathbb{Q}})+\mathcal{O}\Big(\frac{D_{\mathrm{KL}}(\mathbb{Q}||\mathbb{P})+\bar{V}_{n}^{\alpha}(\pi_{\mathbb{Q}})}{\sqrt{n}}+B_{n}^{\alpha}(\pi_{\mathbb{Q}})\Big)\,.$$

Experiments

Below, η_0 represents the quality of the logging policy (the higher the better). We perform better than the most competitive baseline¹.



POSTER: Exhibit Hall 1 #309, Wed 26 Jul 11 a.m. - 12:30 p.m. Thank you!

¹O. Sakhi, N. Chopin, and P. Alquier. "PAC-Bayesian Offline Contextual Bandits With Guarantees". In: *ICML* (2023).