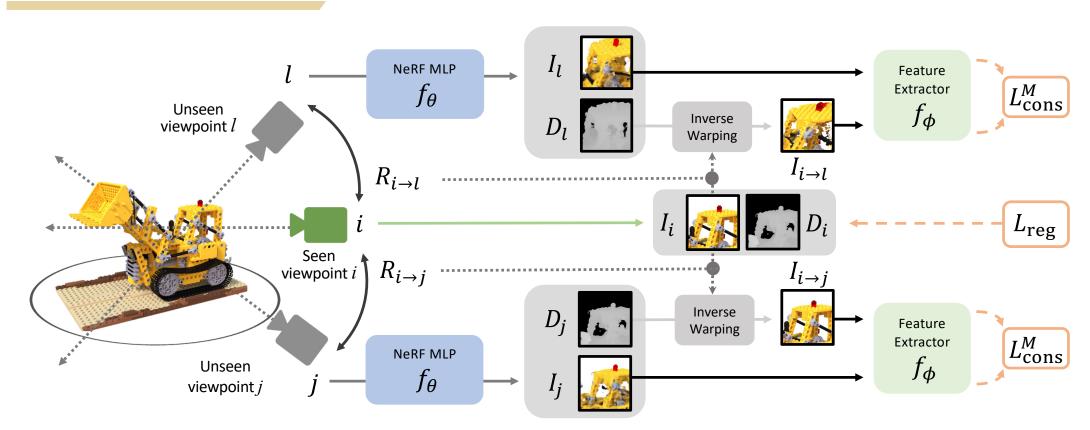


GeCoNeRF: Few-shot Neural Radiance Fields via Geometric Consistency

Motivation

- **NeRF** requires numerous (100+) densely, well distributed calibrated images for optimization, which limits applicability
- The task of **few-shot NeRF** aims to optimize high-fidelity neural radiance field in such sparse scenario
- Previous works' reliance on handcrafted methods or inability to extract local and fine structures limit their performance
- We propose a novel methodology, GeCoNeRF, short for Geometric **Consistency NeRF**, a regularization technique that enforces a geometric consistency across different views in a self-supervised manner with a depth-guided warping and a geometry-aware consistency modeling.

Architecture

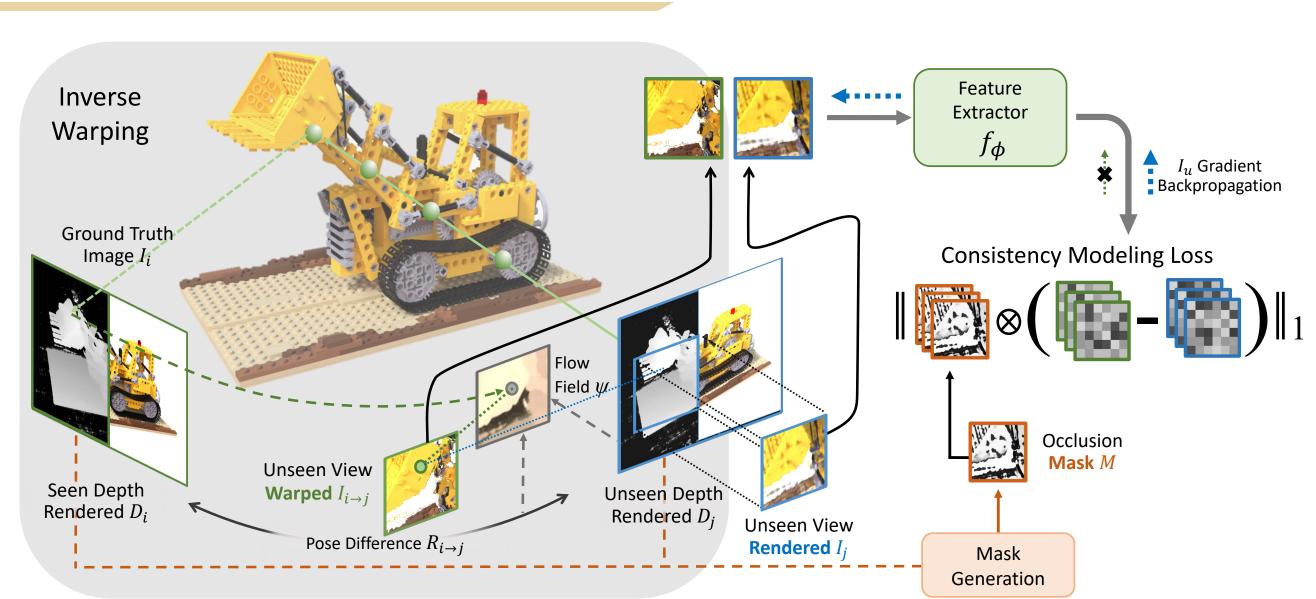


- Warping occurs between observed and unobserved viewpoints using depth geometry recovered & rendered by NeRF
- Consistency loss function \mathcal{L}_{Cons}^{M} is applied between the unobserved viewpoint image and warped observed viewpoint image for regularization
- Disparity regularization loss \mathcal{L}_{reg} regularizes depth at seen viewpoints.

Min-Seop Kwak*, Jiuhn Song*, Seungryong Kim†

Computer Vision Laboratory, Korea University

Overview and Contributions



Rendered Depth-Guided Warping

To generate pseudo ground truth patches for unknown viewpoints, ground truth image I_i is warped to unseen viewpoint *j* using unseen rendered depth D_j in a following manner:

 $p_{j \to i} \sim K R_{j \to i} D_j(p_j) K^{-1} p_j$ $D(\mathbf{r}_p) = \int_{0}^{0} T(t)\sigma(\mathbf{r}_p(t))tdt$

Feature-level Consistency Modeling

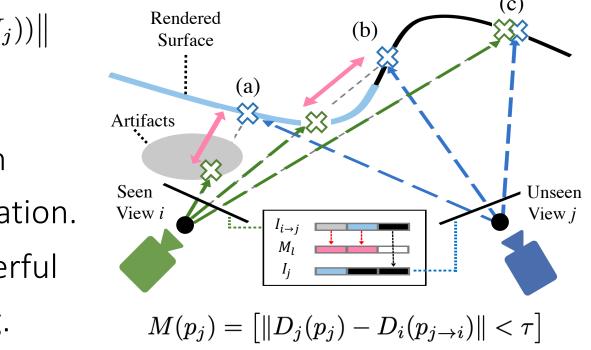
- We define the consistency between the unknown view rendered patch I_i and warped patch $I_{i \rightarrow j}$ to encourage additional regularization for local geometric consistency.
- To overcome failures in modeling non-Lambertian surfaces and fine-grained occlusions, we propose masked feature-level regularization loss that focuses upon structural consistency.

$$\mathcal{L}_{\text{cons}}^{M} = \sum_{l=1}^{L} \frac{1}{C_l m_l} \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) - f_{\phi}^l(I_{i \to j}) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) - f_{\phi}^l(I_{i \to j}) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) - f_{\phi}^l(I_{i \to j}) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) - f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \odot \left(f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \to \left(f_{\phi}^l(I_{i \to j}) \right) \big\| M_l \to$$

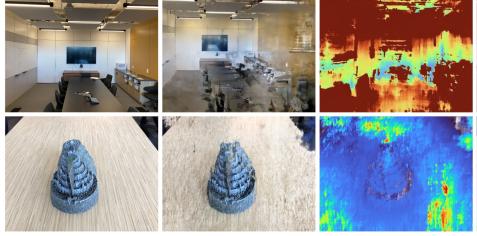
Occlusion Handling, Disparity Regularization, Progressive Annealing

- Consistency mask M_l is constructed to let NeRF ignore regions with geometric inconsistencies, along with seen view disparity regularization.
- We recognize that **progressive freq. encoding annealing** has powerful regularization effect and apply it at the beginning stages of training.

$$I_{i \to j}(p_j) = \operatorname{sampler}(I_i; p_{j \to i})$$

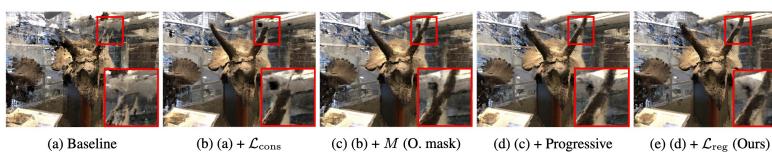


Qualitative Comparisons



(a) Ground-trut

(c) min-NeRF (D)



Quantitative Comparisons

nparison on NeRF-Synthetic (Mildenhall et al., 2020) and LLFF (Mildenhall

Methods	NeRF-Synthetic (Mildenhall et al., 2020)				LLFF (Mildenhall et al., 2019)			
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	Avg. \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	Avg. \downarrow
NeRF (Mildenhall et al., 2020)	14.73	0.734	0.451	0.199	13.34	0.373	0.451	0.255
mip-NeRF (Barron et al., 2021)	17.71	0.798	0.745	0.178	14.62	0.351	0.495	0.246
DietNeRF (Jain et al., 2021)	16.06	0.793	0.306	0.151	14.94	0.370	0.496	$0.2\bar{3}2$
InfoNeRF (Kim et al., 2022)	18.65	0.811	0.230	0.111	14.37	0.349	0.457	0.238
RegNeRF (Niemeyer et al., 2022)	18.01	0.842	0.352	0.132	19.08	0.587	0.336	0.146
GeCoNeRF (Ours)	19.23	0.866	0.201	0.096	18.77	0.596	0.338	0.145

Quantitative comparisons show our model's competitive results in NeRF-Synthetic dataset and LLFF dataset, whose PSNR results show large improvement in comparison to mip-NeRF baseline and competitive compared to previous SOTA, RegNeRF.

Project Page QR Code

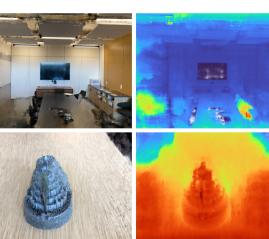
Comparison w/ Previous Methods

In 3-view setting, our method captures fine details more robustly (such as the wire in the *mic* scene) and produces less artifacts (background in the materials scene) compared to previous methods

Comparison with baseline mip-NeRF on

LLFF dataset shows that our model learns

of coherent depth and geometry in



(d) GeCoNeRF

sparse three-view scenario.

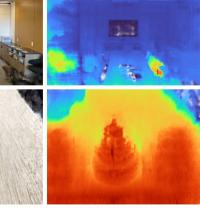
Qualitative Ablation Study

Our qualitative ablation results on Horns scene shows the contribution of each module in the performance of our model.

Components	PSNR↑	SSIM ↑	LPIPS↓	Avg.↓
(a) Baseline	14.62	0.351	0.495	0.246
(b) (a) + \mathcal{L}_{cons}	18.10	0.529	0.408	0.164
(c) (b) + M (O. mask)	18.24	0.535	0.379	0.159
(d) (c) + Progressive	18.46	0.552	0.349	0.151
(e) (d) + \mathcal{L}_{reg} (Ours)	18.55	0.592	0.340	0.150

Table 3. Progressive training ablation

Components	PSNR ↑	SSIM ↑	LPIPS↓	Avg.↓
w/o prog. anneal	18.50	0.852	0.781	0.161
w/o prog. pose	16.96	0.799	0.811	0.194
w/o both	17.04	0.788	0.823	0.197
GeCoNeRF (Ours)	19.23	0.866	0.723	0.148



(e) GeCoNeRF (D)

ICML On Machine Learning