Online Restless Bandits with Unobserved States

Bowen Jiang¹, Bo Jiang¹, Jian Li ², Tao Lin³, Xinbing Wang¹, Chenghu Zhou⁴

¹Shanghai Jiao Tong University, ²SUNY-Binghamton University, ³Communication University of China, ⁴Chinese Academy of Science

ICML, July 2023

- The restless multi-armed bandits (RMAB) is a general setup to model sequential decision making problems ranging from wireless communication, healthcare, etc.
- Genaral Setting:
 - considers one agent and N arms
 - each arm *i* is modulated by a Markov chain M^i with state transition function P^i and reward function R^i .
 - at each time, the agent decides which arm to pull
 - after the pulling, all arms make a state transition independently
 - the agent receives a reward r_t
- Goal: maximize the expected reward, i.e., $\mathbb{E}[\sum_{t=1}^{T} r_t]$, where r_t is the reward at time t and T is the time horizon.

Motivation

- The system parameters (transition functions and reward functions) are often unknown in advance
- The arms' states are often unobserved in real world application

Challenges

- 1. How to estimate the unknown parameters with unobserved states and control the estimation errors?
- 2. How to design the algorithm which control the total regret well?
- 3. How about the theoretical analysis without the observed state-action pairs?

Problem Formulation

- consider unknown P^i , R^i and unobserved states s_t^i for $\forall i, t$.
- Goal: Minimize the Bayesian regret of policy π as follows,

$$R_{\mathcal{T}} := \mathbb{E}_{\theta^* \sim Q} \left[\sum_{t=1}^{T} \left(J(\theta^*) - r_t \right) \right], \tag{1}$$

where $J(\theta^*)$ is the optimal reward under the setting with unknown states and known parameters, Q is the prior distribution, θ^* is the true parameters(including P^i , R^i for all arms)

• existing results:

frequentist regret $\tilde{O}(T^{2/3})$ (Zhou et al,2021) and Bayesian regret $\tilde{O}(T^{2/3})$ (Jahromi et al, 2022)

- Assumptions:
 - 1. The smallest element ϵ_1 in the transition functions $P^i, i \in N$ is larger than zero.
- Our contribution:
 - Our solution to Challenge 1: update the posterior distribution as mixture of Dirichlet distributions
 - Our solution to Challenge 2: conduct the explore-then-commit learning in an episodic way and operate in episodes with increasing length
 - Our solution to Challenge 3: define the pseudo-count about the number of visits to state-action based on Dirichlet distribution and prove the first Bayesian regret $\tilde{\mathcal{O}}(\sqrt{T})$

- all state sequences (and their corresponding Dirichlet posteriors) should be considered, with some weight proportional to the likelihood of each state sequence
- assume that

 $P^{i} = \epsilon_{1}\mathbf{1} + (1 - S\epsilon_{1})\tilde{P}^{i}$, $R^{i} = \epsilon_{2}\mathbf{1} + (1 - S\epsilon_{2})\tilde{R}^{i}$, where $\tilde{P}^{i}, \tilde{R}^{i}$ follows the Dirichlet distribution and $\mathbf{1}$ is the vector with one in each position. **Algorithm 1** Posterior Update for $R^i(s, \cdot)$ and $P^i(s, \cdot)$

- Input: the history length τ₁, the state space S, the belief history bⁱ_{0:τ1}, the reward history τⁱ_{0:τ1}, the initial parameters φⁱ_{s,s'}, ψⁱ_{s,r}, for s, s' ∈ S, r ∈ R,
- 2: generate S^{τ_1} possible state sequences
- 3: calculate the weight $w(j) = \prod_{t=0}^{\tau_1 1} b_t^i(s, \theta), j \in S^{\tau_1}$
- 4: for j in $1, \ldots, S^{\tau_1}$ do
- 5: count the occurence times of event (s, s') and (s, r) as $N_{s,s'}^i$, $N_{s,r}^i$ in sequence j
- $\text{6:} \quad \text{update } \phi^i_{s,s'} \leftarrow \phi^i_{s,s'} + N^i_{s,s'}, \psi^i_{s,r} \leftarrow \psi^i_{s,r} + N^i_{s,r} \\$
- 7: aggregate the $\phi^i_{s,s'}$ as $\phi(j), \; \psi^i_{s,r}$ as $\psi(j)$ for all $s,s'\in\mathcal{S},r\in\mathcal{R}$
- 8: end for

 $\begin{array}{l} g_{\tau_1}(P^i) \propto \sum_{j=1}^{S^{\tau_1}} w(j) f(\frac{P^i - \epsilon_1 \mathbf{1}}{1 - S \epsilon_1} \mid \phi(j)), \\ g_{\tau_1}(R^i) \propto \sum_{j=1}^{S^{\tau_1}} w(j) f(\frac{R^i - \epsilon_2 \mathbf{1}}{1 - S \epsilon_2} \mid \psi(j)) \end{array}$

Figure 1: Posterior Update for $R^{i}(s, \cdot)$ and $P^{i}(s, \cdot)$

TSEETC-exploration phase

- TSEETC operates in episodes with different lengths
- In episode k, for the exploration phase

- Step 1: initialize R_{t_k} , P_{t_k}
- Step 2: pull each arm for τ_1/N times in a round-robin way
- Step 3: update the arm's belief state with pulled or not
- Then the reward and belief history of each arm are input into Algorithm 1 to update the posterior distribution

41-	and the other states of the state of the state of the states of the stat
Alg	orithm 2 Thompson Sampling with Episodic Explore-
The	en-Commit
1:	Input: prior $g_0(P), g_0(R)$, initial belief b_0 , exploration
	length τ_1 , the first episode length T_1
2:	for episode $k = 1, 2,, do$
3:	start the first time of episode $k, t_k := t$
4:	sample $R_{t_k} \sim g_{t_{k-1}+\tau_1}(R)$ and $P_{t_k} \sim g_{t_{k-1}+\tau_1}(P)$
5:	for $t = t_k, t_k + 1,, t_k + \tau_1$ do
6:	pull the arm i for τ_1/N times in a round robin way
7:	receive the reward r_t
8:	update the belief b_t^i using R_{t_k} , P_{t_k} according to
	(4)
9:	update the belief $b_t^j, j \in N \setminus \{i\}$ using P_{t_k} accord-
	ing to (5)
10:	end for
11:	for $i = 1, 2,, N$ do
12:	input the obtained $r_{t_1:t_1+\tau_1},, r_{t_k:t_k+\tau_1}$,
	$b_{t_1:t_1+\tau_1}, \dots, b_{t_k:t_k+\tau_1}$ to Algorithm 1 to update
	the posterior distribution $g_{t_k+\tau_1}(P), g_{t_k+\tau_1}(R)$
13:	end for
10.	end for

Figure 2: Thompson Sampling with Episodic Explore-Then-Commit

TSEETC-exploitation phase

- Then we sample the new $R_{t_k+\tau_1}$, $P_{t_k+\tau_1}$ from the posterior distribution
- re-calibrate the belief b_t based on the most recent sampled $R_{t_k+\tau_1}$, $P_{t_k+\tau_1}$.
- Next, we enter into the exploitation phase (line 18-23)
 - Step 1: use an Oracle to derive the optimal policy π_k for the sampled parameters R_{t_k+τ₁}, P_{t_k+τ₁}
 - Step 2: use policy π_k for the rest of the episode k

14.	sample $n_{t_k+\tau_1} \sim g_{t_k+\tau_1}(r)$, $r_{t_k+\tau_1} \sim g_{t_k+\tau_1}(n)$
15:	for i in $0, 1,, N$ do
16:	re-update the belief b_t^i from time 0 to $t_k + \tau_1$ ac-
	cording to $R_{t_k+\tau_1}$ and $P_{t_k+\tau_1}$
17:	end for
18:	compute $\pi_k^*(\cdot) = \text{Oracle}(\cdot, R_{t_k+\tau_1}, P_{t_k+\tau_1})$
19:	for $t = t_k + \tau_1 + 1, \cdots, t_{k+1} - 1$ do
20:	apply action $a_t = \pi_k^*(b_t)$
21:	observe new reward r_{t+1}
22:	update the belief b_t of all arms using (4), (5)
23:	end for
24: e	nd for

Figure 3: Thompson Sampling with Episodic Explore-Then-Commit

Theorem

Suppose Assumptions 1,2 hold and the Oracle returns the optimal policy in each episode. The Bayesian regret of our algorithm satisfies

$$\begin{aligned} R_T \leq & 48C_1C_2S\sqrt{NT\log(NT)} + C_1C_2 + \\ & (\tau_1\Delta R + H + 4C_1C_2SN)\sqrt{T}, \end{aligned}$$

where C_1 , C_2 , L_1 , L_2 are constants independent with T, τ_1 is the fixed exploration length in each episode, ΔR is is the gap between the maximum and the minimum rewards, H is the bounded span, r_{max} is the maximum reward obtain each time.

• first to achieves the $\tilde{\mathcal{O}}(\sqrt{T})$ Bayesian regret bound on average

Numerical Experiments

- Basic setting: two arms with two hidden states (0 and 1), the reward set $\{10, 20\}$ at state 1, the reward set $\{-10, 10\}$ at state 0, learning horizon T = 50000
- Baselines: ϵ -greedy, Sliding-Window UCB , RUCB, Q-learning, SEEU

Figure 4: The cumulative regret

Figure 5: The log-log regret

- TSEETC has the minimum regret among these algorithms.
- the slope of TSEETC is close to 0.5, which is consistent with our theoretical result

Bowen Jiang (SJTU)

- consider restless bandits with unknown states and unknown dynamics.
- propose the TSEETC algorithm to estimate these unknown parameters and derive the optimal policy
- establish the Bayesian regret of our algorithm as $\tilde{\mathcal{O}}(\sqrt{T})$.
- future work
 - consider the setting where the transition functions are action dependent
 - discuss the impact of approximation errors on the posterior distribution in relation to the regret bound

11/12

Thank you!

• • • • • • • •

æ