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Background

Bayesian Neural Networks (BNNs): Evidential Neural Networks [1I:
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* Predictions with softmax is over-confidence and cannot distinguish between different
uncertainties.

* BNNs and Ensemble methods are computationally expensive, and also cannot distinguish
between distributional uncertainty and other uncertainties.

* Evidential neural networks quantify different types of uncertainty by modeling the output
as the evidence use to obtain concentration parameters of a Dirichlet distribution.

[1] Sensoy et al., Evidential deep learning to quantify classification uncertainty. NeurlPS 2018.




Motivation: EDL underestimates data uncertainty

Limitation: EDL cannot distinguish samples with Analysis: For samples with high data uncertainty but annotated
different data uncertainties. with one-hot vectors, the learning process of evidence for those
mislabeled classes is over-penalized and remains hindered.

' Graphical model representation of EDL:
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Figure 1. Data uncertainty for (a) digit “4” in MNIST, (b) “horse” —

in CIFAR10. Z-EDL has the ability to distinguish between hard max E log E (o IV ) ,,'-’I)

samples (orange) and easy samples (green), but EDL cannot. 0 (®.y)~P [ R PR (a)[ ylp H



Methods: Fisher Information-based Evidential Deep Learning (I-EDL)

Key Idea: A certain class label with higher evidence is allowed Method: Use Fisher Information Matrix (FIM) to measure the
to have a larger variance, so that the evidence for missing amount of information that the observed class probabilities p
labels can be preserved while maximizing the likelihood of carry about the concentration parameters a of a Dirichlet

the observed labels. distribution that models p.

Graphical model representation of I-EDL:
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Methods: Fisher Information-based Evidential Deep Learning (I-EDL)
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‘ Jensen’s inequality
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IELGENENR

e Standard neural network for classification with Softmax is over-confidence and cannot distinguish
between different uncertainties.

e Although Evidential Deep Learning (EDL) models different types of uncertainties, it still cannot
distinguish between samples of different data uncertainties.

e we propose a novel and simple method, Fisher Information-based Evidential Deep Learning (I-EDL),
to alleviate the over-penalization of the mislabeled classes by considering importance weights with
different classes.

* Extensive experiments on various image classification, confidence evaluation and OOD detection
tasks demonstrate the effectiveness of our approach in achieving high classification and uncertainty

quantification.



Thanks for your listening.




