

Uncertainty Estimation by Fisher Informationbased Evidential Deep Learning

Danruo Deng¹, Guangyong Chen^{2*}, Yang Yu¹, Furui Liu², Pheng-Ann Heng¹ ¹The Chinese University of Hong Kong, ²Zhejiang Lab Background

Bayesian Neural Networks (BNNs):

Ensemble Methods:

Evidential Neural Networks ^[1]:

- Predictions with *softmax* is **over-confidence** and **cannot distinguish between different uncertainties.**
- BNNs and Ensemble methods are computationally expensive, and also cannot distinguish between distributional uncertainty and other uncertainties.
- Evidential neural networks **quantify different types of uncertainty** by modeling the output as the evidence use to obtain concentration parameters of a Dirichlet distribution.

Motivation: EDL underestimates data uncertainty

Limitation: EDL **cannot** distinguish samples with **different data uncertainties**.

(a)	Ц	Ц	4	4	4
EDL	0.63	0.43	0.72	0.63	0.14
I-EDL	1.54	1.49	0.98	0.82	0.47
					8
20			-	-	mo
(b)	24	h H	e		200
(b) EDL	0.23	0.12	0.15	0.35	0.09

Figure 1. Data uncertainty for (a) digit "4" in MNIST, (b) "horse" in CIFAR10. \mathcal{I} -EDL has the ability to distinguish between hard samples (orange) and easy samples (green), but EDL cannot.

Analysis: For samples with **high data uncertainty** but annotated with **one-hot vectors**, the learning process of evidence for those mislabeled classes is **over-penalized and remains hindered**.

Graphical model representation of EDL:

Objective function:

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{P}} \mathbb{E}_{\boldsymbol{p}\sim Dir(\boldsymbol{\alpha})} \left[(\boldsymbol{y} - \boldsymbol{p})^T (\boldsymbol{y} - \boldsymbol{p}) \right]$$
$$\max_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{P}} \left[\log \mathbb{E}_{\boldsymbol{p}\sim Dir(\boldsymbol{\alpha})} [\mathcal{N}(\boldsymbol{y}|\boldsymbol{p}, \sigma^2 \boldsymbol{I})] \right]$$

Key Idea: A certain class label with **higher evidence** is allowed to have a **larger variance**, so that **the evidence for missing labels can be preserved** while maximizing the likelihood of the observed labels.

Graphical model representation of I-EDL:

Objective function:

$$\max_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{P}} \left[\log \mathbb{E}_{\boldsymbol{p}\sim Dir(\boldsymbol{\alpha})} [\mathcal{N}(\boldsymbol{y}|\boldsymbol{p},\sigma^2 \mathcal{I}(\boldsymbol{\alpha})^{-1})] \right]$$

Method: Use Fisher Information Matrix (FIM) to measure the amount of information that **the observed class probabilities p** carry about the **concentration parameters** α of a Dirichlet distribution that models p.

$$\mathcal{I}(\boldsymbol{\alpha}) = \mathbb{E}_{Dir(\boldsymbol{p}|\boldsymbol{\alpha})} \left[\frac{\partial \ell}{\partial \boldsymbol{\alpha}} \frac{\partial \ell}{\partial \boldsymbol{\alpha}^T} \right]$$

= diag([\psi^{(1)}(\alpha_1), \cdots, \psi^{(1)}(\alpha_K)]) - \psi^{(1)}(\alpha_0) \mathbf{1} \mathbf{1}^T

- $\psi^{(1)}(\cdot)$ denotes the trigamma function, defined as $\psi^{(1)}(x) = d\psi(x)/dx = d^2 \ln \Gamma(x)/dx^2$.
- Since $\psi^{(1)}(x)$ is a monotonically decreasing function when x > 0, the class label with higher evidence corresponds to less Fisher information.

Table 1. Given a sample (x_i, y_i) , the difference in loss function between \mathcal{I} -EDL and EDL are marked in blue.

	EDL	$\mathcal{I} extsf{-EDL}$
MSE	$\sum_{j=1}^{K} (y_{ij} - \frac{\alpha_{ij}}{\alpha_{i0}})^2$	$\sum_{j=1}^{K} (y_{ij} - \frac{\alpha_{ij}}{\alpha_{i0}})^2 \psi^{(1)}(\alpha_{ij})$
MoL	$+\sum_{j=1}^{K} \frac{\alpha_{ij}(\alpha_{i0}-\alpha_{ij})}{\alpha_{i0}^{2}(\alpha_{i0}+1)}$	$+\sum_{j=1}^{K}rac{lpha_{ij}(lpha_{i0}-lpha_{ij})}{lpha_{i0}^{2}(lpha_{i0}+1)}\psi^{(1)}(lpha_{ij})$
KL	$D_{ ext{KL}}(Dir(\hat{oldsymbol{lpha}}_i) \ Dir(1))$	$D_{ ext{KL}}(Dir(\hat{oldsymbol{lpha}}_i) \ Dir(1))$
I	(#3)	$-\log \mathcal{I}(oldsymbol{lpha}_i) $

- Standard neural network for classification with Softmax is **over-confidence** and cannot distinguish
- **between different uncertainties.**
- Although Evidential Deep Learning (EDL) models different types of uncertainties, it still cannot distinguish between samples of different data uncertainties.
- we propose a novel and simple method, *Fisher Information-based Evidential Deep Learning (I-EDL)*, to alleviate the over-penalization of the mislabeled classes by considering importance weights with different classes.
- Extensive experiments on various image classification, confidence evaluation and OOD detection tasks demonstrate the effectiveness of our approach in achieving high classification and uncertainty quantification.

Thanks for your listening.