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Verification Goal: The perturbation to an input, bounded within some 𝐿∞-ball, 
should yield the same prediction result as the original input. 

Research target: Build better tools to verify bigger epsilon on bigger networks.

The robustness verification problem
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Verification Goal: The perturbation to an input, bounded within some 𝐿∞-ball, 
should yield the same prediction result as the original input. 

Research target: Build better tools to verify bigger epsilon on bigger networks.

However, it is important to acknowledge a limitation regarding the 𝐿∞ -ball 
specifications.

The robustness verification problem
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The 𝑳∞-ball specifications

a) A testing image from 
MNIST, classified as 1
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The 𝑳∞-ball specifications

A testing image

The input space of MNIST
5
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The 𝑳∞-ball specifications

A testing image

An adv. example

𝟎. 𝟐(𝑳∞)
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The input space
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The 𝑳∞-ball specifications

A testing image

An adv. example

Verifiable region

𝑎 + 𝛿 𝑠. 𝑡. 𝛿 ∞≤ 0.2
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The input space

𝑏

𝑎
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The 𝑳∞-ball specifications

A testing image

An adv. example

The closest image to a) 

𝟎. 𝟓𝟑(𝑳∞)
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The input space

𝑐
𝑏

𝑎



Geng, Le, Xu, Wang, Gurfinkel & Si Towards Reliable Neural Specifications July 2023

The 𝑳∞-ball specifications
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The distribution of 𝐿2-norms between any two 
image with the label. Higher → further away.

The distribution of 𝐿∞-norms between any two 
images with the same label. The red line is drawn 
at 0.05 – the largest 𝜖 used in the VNNCOMP 2021.
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The 𝑳∞-ball specifications

A testing image

An adv. example

The closest image to a) 
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The input space
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The neural activation pattern specifications
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Linear regions in different colors are determined by 
weights and biases of the neural network. Points 
colored either red or green constitute the training 
set.

A simple NN with six neurons.

(𝑥, 𝑦)

“red” 
or 
“green”
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The neural activation pattern specifications
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Linear regions in different colors are determined by 
weights and biases of the neural network. Points 
colored either red or green constitute the training 
set.

+ +

+

--

-

Activated and deactivated neurons are denoted by + and -.

(1.15,0.15) “red”
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The neural activation pattern specifications
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Linear regions in different colors are determined by 
weights and biases of the neural network. Points 
colored either red or green constitute the training 
set.

+ +

+

--

-

Activated and deactivated neurons are denoted by + and -.

“red”

The frequency of each ReLU and the NAPs for each label. 
* denotes an arbitrary neuron state.

(1.15,0.15)
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The neural activation pattern specifications
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Linear regions in different colors are determined by 
weights and biases of the neural network. Points 
colored either red or green constitute the training 
set.

NAPs are more flexible than 𝐿∞ norm-balls (boxes) 
in terms of covering verifiable regions.
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Neural activation pattern (NAP)

A ReLU activated neuron output = max(0, input) is either 
“activated” or “deactivated”

Running each input through the network emits an 
activation pattern

Insights:

▪ Do images of the same class emit similar patterns?

▪ Can we use a NAP 𝒫 to certify all inputs associated 

with a specific label?
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Credit to: 
https://youtu.be/aircAruvnKk

(In other words, given a pattern 𝒫, if 𝑥 follows 𝒫, must 𝑥 be classified 

as a certain label?)
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Formal definitions of NAP
A NAP 𝒫 is a tuple (𝐴, 𝐷)

▪ 𝐴 and 𝐷 are two disjoint subsets of activated and deactivated neurons.
▪ 𝒫 may or may not contain all neurons in the network

Ordering of NAPs: 𝒫1 ≤ 𝒫2

iff 𝐴1 is a superset of 𝐴2

and 𝐷1 is a superset of 𝐷2

Extraction function:

▪ 𝐸(𝒩, 𝑥) returns 𝒫𝐸 = (𝐴𝐸 , 𝐷𝐸) 
▪ 𝒫𝐸 represents all the activated and deactivated neurons when passing 𝑥 through 𝒩

An input 𝑥 follows a NAP 𝒫 of a neural network 𝒩 if 𝐸(𝒩, 𝑥) ≤ 𝒫
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NAP examples:
𝒫0 = ((𝑛0), (𝑛1))
𝒫1 = ((𝑛0, 𝑛2, 𝑛5), (𝑛1, 𝑛3))
𝒫2 = ((), ())
𝒫𝐸 = ((𝑛0, 𝑛2, 𝑛4, 𝑛5), (𝑛1, 𝑛3))
𝒫𝐸 ≤ 𝒫1 ≤ 𝒫0 ≤ 𝒫2
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Mining NAPs for label/class
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“Do images of the same class 
emit similar patterns?”
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Mining NAPs for label/class
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Goal: Identify neurons that 
exhibit consistent behavior 
across all inputs associated with 
a specific label.

“Do images of the same class 
emit similar patterns?”
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Mining NAPs for label/class
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Goal: Identify neurons that 
exhibit consistent behavior 
across all inputs associated with 
a specific label.

NAP for label 1 

“Do images of the same class 
emit similar patterns?”
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Goal: Find a NAP 𝒫l such that the 
majority of inputs with label l
follow 𝒫l

Mining NAPs for label/class

The “majority” is controlled by the relaxing factor δ: 
should 𝒫𝑙 be followed by 100% inputs, or 99.5% 
inputs with label l
Note: 

● lower δ -> more neurons are fixed -> many 
inputs with label l may not follow the NAP 
(low recall)

● higher δ -> fewer neurons are fixed -> inputs 
of other labels may also follow the NAP (low 
precision)
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“Do images of the same class emit 
similar patterns?”
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Intriguing NAP properties
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“Can we use a NAP 𝒫 to certify all 
inputs associated with a specific 

label?”

Non-ambiguity: An input can’t follow two different NAPs at the same time. 

NAP-robustness: Inputs that follows a 𝒫𝑙 for label l are predicted as l by the 
network.

NAP-augmented robustness: Inputs within some 𝜖-balls that follow a 𝒫𝑙 are 
predicted as l by the network.
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Intriguing NAP properties

Non-ambiguity: An input can’t follow two different NAPs at the same time. 

NAP-robustness: Inputs that follows a 𝒫𝑙 for label l are predicted as l by the 
network.

NAP-augmented robustness: Inputs within some 𝜖-balls that follow a 𝒫𝑙 are 
predicted as l by the network.
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“Can we use a NAP 𝒫 to certify all 
inputs associated with a specific 

label?”
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Working with NAPs
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● NAP properties can be encoded as extra QF-LRA constraints

● Verify the property using any off-the-shelf neural network verification tool

● Example: check the right NN is NAP-robust with 𝒫0 = ((v0), (v1))
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Working with NAPs

the network encoded 
as a set of constraints

26

● NAP properties can be encoded as extra QF-LRA constraints

● Verify the property using any off-the-shelf neural network verification tool

● Example: check the right NN is NAP-robust with 𝒫0 = ((v0), (v1))
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v0 > 0 #NAP constraint
v1 ≤ 0 #NAP constraint
y0 < y1 #Negation of the property

Working with NAPs

NN-Verifier

UNSAT
(SAFE) 
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● NAP properties can be encoded as extra QF-LRA constraints

● Verify the property using any off-the-shelf neural network verification tool

● Example: check the right NN is NAP-robust with 𝒫0 = ((v0), (v1))
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Results
Datasets

CIFAR10

MNIST

28
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MNIST with FCN
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• With 𝐿∞ balls, the neighborhood of 𝜖=0.2 of the reference point cannot be 
verified.

• Augmenting with the NAP 𝒫1
0.99succeed in verifying the neighborhood of 𝜖=0.2 

of the reference point.
• 𝒫1

0.99 can verify the whole input space, covering 84% of test images.



Geng, Le, Xu, Wang, Gurfinkel & Si Towards Reliable Neural Specifications July 2023

CIFAR10 with CNN
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• With NAPs, we are able to verify more examples at every 𝜖.
• We push the known verifiable bound to 10 times larger on the 

CIFAR10 benchmark.
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Thank You!

Please contact: chuqin.geng@mail.mcgill.ca if you have any questions!
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