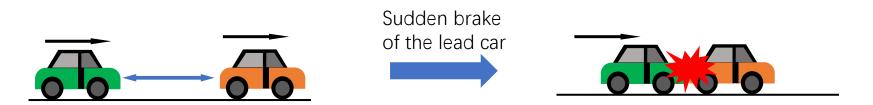
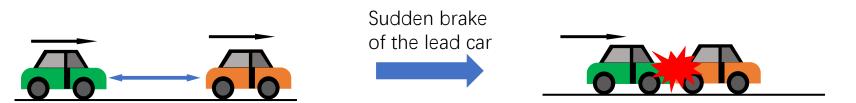


Robust Situational Reinforcement Learning in Face of Context Disturbances


Jinpeng Zhang¹, Yufeng Zheng², Chuheng Zhang³, Li Zhao³, Lei Song³, Yuan Zhou¹, Jiang Bian³ ¹Tsinghua University, ²University of Toronto, ³Microsoft Research Asia

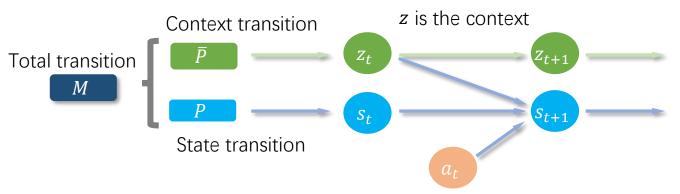
Motivation

- Context variable: the dynamic and uncontrollable environmental factor in many real-world tasks
 - E.g., Inventory Control and Adaptive Cruise Control (ACC):

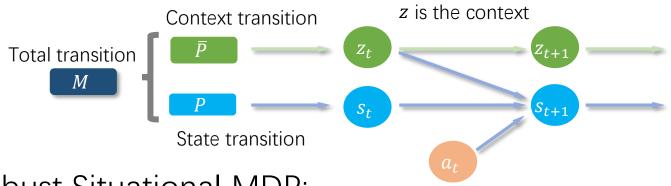

Context variables are the customer demand and speed of lead car, respectively, which are independent of agent's action, and have large uncertainty

Motivation

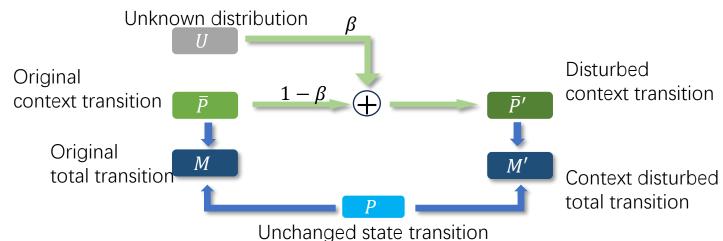
- Context variable: the dynamic and uncontrollable environmental factor in many real-world tasks
 - E.g., Inventory Control and Adaptive Cruise Control (ACC):


Context variables are the customer demand and speed of lead car, respectively, which are independent of agent's action, and have large uncertainty

- Put uncertainty only to contexts!
 - After taking an action, the state of the ego car is clear
 - Robustness against worst-case context disturbances


Problem Formulation

• Situational RL: factorized transitions $M(s', z'|s, z, a) = \overline{P}(z'|z)P(s'|s, z, a)$



Problem Formulation

• Situational RL: factorized transitions $M(s', z'|s, z, a) = \overline{P}(z'|z)P(s'|s, z, a)$

- Robust Situational MDP:
 - Put Huber's contamination model to context transitions

Method: Basics

• Our Robust Bellman Equation

$$\mathcal{B}_{\text{rob}}^{\pi}Q(s,z,a) = r(s,z,a) + \gamma(1-\beta)\mathbb{E}_{s',z',a'}[Q(s',z',a')] + \gamma\beta \min_{U \in \Delta(\mathcal{Z})} \int_{\mathcal{Z}} \mathbb{E}_{s',a'}[Q(s',z'',a')]U(z'')dz''$$

Method: Basics

• Our Robust Bellman Equation

$$\mathcal{B}_{\text{rob}}^{\pi}Q(s,z,a) = r(s,z,a) + \gamma(1-\beta)\mathbb{E}_{s',z',a'}[Q(s',z',a')]$$
$$+\gamma\beta \min_{U\in\Delta(\mathcal{Z})} \int_{\mathcal{Z}} \mathbb{E}_{s',a'}[Q(s',z'',a')]U(z'')dz''$$
$$= r(s,z,a) + \gamma(1-\beta)\mathbb{E}_{s',z',a'}[Q(s',z',a')]$$
$$+\gamma\beta \min_{z''} \mathbb{E}_{s',a'}[Q(s',z'',a')]$$

Method: Basics

• Our Robust Bellman Equation

$$\mathcal{B}_{\text{rob}}^{\pi}Q(s,z,a) = r(s,z,a) + \gamma(1-\beta)\mathbb{E}_{s',z',a'}[Q(s',z',a')]$$
$$+\gamma\beta \min_{U\in\Delta(\mathcal{Z})} \int_{\mathcal{Z}} \mathbb{E}_{s',a'}[Q(s',z'',a')]U(z'')dz''$$
$$= r(s,z,a) + \gamma(1-\beta)\mathbb{E}_{s',z',a'}[Q(s',z',a')]$$
$$+\gamma\beta \min_{z''} \mathbb{E}_{s',a'}[Q(s',z'',a')]$$

• Our proposed robust Bellman equation precisely captures the setting where only deviations of the context transitions matter

Method: Deep RL Case

• To scale to large context space, we introduce the softmin smoothed robust Bellman operator

$$\begin{split} \mathcal{B}_{\tau}^{\pi}Q(s,z,a) &= r(s,z,a) + \gamma(1-\beta)\mathbb{E}_{s',z',a'}[Q(s',z',a')] \\ &+ \gamma\beta\cdot\operatorname{SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin} \to \operatorname{Min}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{Intuitively, as temperature } \tau \to 0, \text{ SoftMin}_{z'}(\tau) \\ &= 0, \text{ SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right) \quad \text{SoftMin}_{z'}\left(\mathbb{E}_{s',a'}[Q(s',z',a')]\right)$$

Method: Deep RL Case

• To scale to large context space, we introduce the softmin smoothed robust Bellman operator

 $\mathcal{B}^{\pi}_{\tau}Q(s,z,a) = r(s,z,a) + \gamma(1-\beta)\mathbb{E}_{s',z',a'}[Q(s',z',a')]$

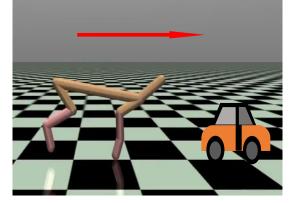
 $+ \gamma \beta \cdot \operatorname{SoftMin}_{z'} \left(\mathbb{E}_{s',a'}[Q(s',z',a')] \right)$ Intuitively, as temperature $\tau \to 0$, SoftMin \to Min

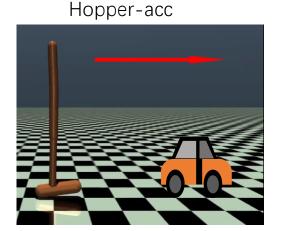
- Robust Situational Soft Actor-Critic (RS-SAC):
 - The target of critic network in original SAC is changed to be the softmin smoothed robust Bellman backup

Method: Deep RL Case

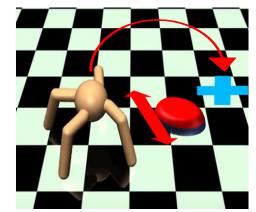
• To scale to large context space, we introduce the softmin smoothed robust Bellman operator

 $\mathcal{B}^{\pi}_{\tau}Q(s,z,a) = r(s,z,a) + \gamma(1-\beta)\mathbb{E}_{s',z',a'}[Q(s',z',a')]$

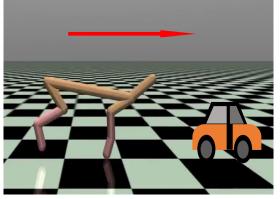

 $+ \gamma \beta \cdot \operatorname{SoftMin}_{z'} \left(\mathbb{E}_{s',a'}[Q(s',z',a')] \right)$ Intuitively, as temperature $\tau \to 0$, SoftMin \to Min

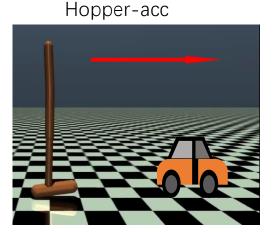

- Robust Situational Soft Actor-Critic (RS-SAC):
 - The target of critic network in original SAC is changed to be the softmin smoothed robust Bellman backup
- We theoretically show that the softmin is a reasonable approximation to the true robust Bellman equation

Theorem. Let $Q_t = \mathcal{B}_{\tau}^{\pi} Q_{t-1}$ to be the t-th iteration applying the softmin smoothed robust Bellman equation and fix $\epsilon > 0$. Then there exists constant C > 0 such that the difference between Q_t and the true robust Q-function Q_{rob}^{π} satisfies

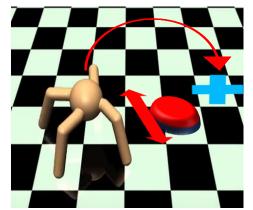

$$||Q_t - Q_{\rm rob}^{\pi}||_{\infty} \lesssim \gamma^t ||Q_0 - Q_{\rm rob}^{\pi}||_{\infty} + \frac{\beta C}{1 - \gamma} \cdot \tau$$

• Tasks HalfCheetah-acc

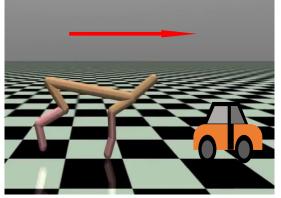


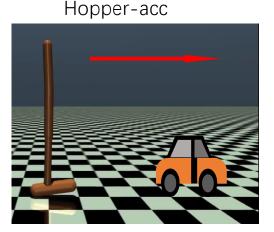


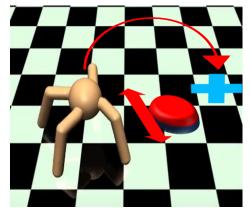
Ant-cross



Tasks HalfCheetah-acc

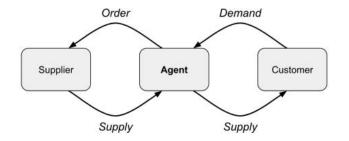



Ant-cross


- Context transitions:
 - HalfCheetah-acc and Hopper-acc:
 - Speed of lead car $v_{t+1} = v_t + \Delta v$, where $\Delta v \sim N(\mu, \sigma)$ is the change of speed
 - Ant-cross:
 - Obstacle position $y_t \sim N(\mu, \sigma)$

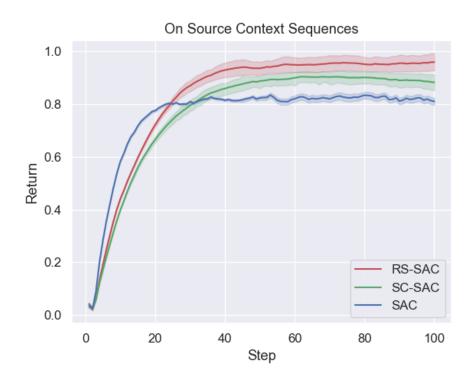
Tasks HalfCheetah-acc

- Context transitions:
 - HalfCheetah-acc and Hopper-acc:
 - Speed of lead car $v_{t+1} = v_t + \Delta v$, where $\Delta v \sim N(\mu, \sigma)$ is the change of speed
 - Ant-cross:
 - Obstacle position $y_t \sim N(\mu, \sigma)$
- Will change μ and σ to other values to test robustness against context disturbances

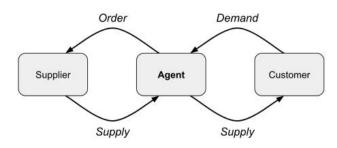

• Overall average returns

	RS-SAC	SAC	DR-SAC	PR-SAC	SC-SAC
HalfCheetah-acc	1622.8	1144.8	1251.6	1292.1	1474.8
Hopper-acc	2044.8	1921.6	1894.3	1621.8	1989.2
Ant-cross	340.7	341.6	288.5	83.7	41.3

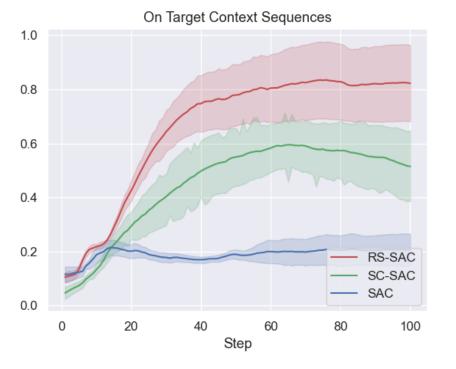
- Our algorithm RS-SAC
 - achieves better performance in HalfCheetah-acc and Hopper-acc
 - achieves competitive performance in Ant-cross


Experiments: Real-world Inventory Control

- Context variable: customer demand
 - Large uncertainty



Experiments: Real-world Inventory Control


- Context variable: customer demand
 - Large uncertainty

Competitive in training

Outperform other baselines in testing

Summary

- We introduce robust situational MDP which captures the disturbances in context transitions
- We propose the softmin smoothed robust Bellman operator to apply to existing deep RL algorithms (e.g., SAC)
- Experiments on Locomotion Control tasks with dynamic contexts and inventory control tasks show that our algorithm is more robust to context disturbances