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Motivation

• Context variable: the dynamic and uncontrollable environmental factor in 
many real-world tasks
• E.g., Inventory Control and Adaptive Cruise Control (ACC):

Context variables are the customer demand and  speed of lead car, respectively, which 
are independent of agent’s action, and have large uncertainty
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many real-world tasks
• E.g., Inventory Control and Adaptive Cruise Control (ACC):

Context variables are the customer demand and  speed of lead car, respectively, which 
are independent of agent’s action, and have large uncertainty

• Put uncertainty only to contexts!
• After taking an action, the state of the ego car is clear

• Robustness against worst-case context disturbances
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Problem Formulation

• Situational RL: factorized transitions
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Problem Formulation

• Situational RL: factorized transitions

• Robust Situational MDP: 
• Put Huber’s contamination model to context transitions
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Method: Basics

• Our Robust Bellman Equation
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Method: Basics

• Our Robust Bellman Equation

• Our proposed robust Bellman equation precisely captures the setting 
where only deviations of the context transitions matter
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Method: Deep RL Case

• To scale to large context space, we introduce the softmin smoothed 
robust Bellman operator

• Robust Situational Soft Actor-Critic (RS-SAC):
• The target of critic network in original SAC is changed to be the softmin smoothed 

robust Bellman backup

• We theoretically show that the softmin is a reasonable approximation to 
the true robust Bellman equation

Intuitively, as temperature 𝜏 → 0, SoftMin → Min
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• Context transitions:
• HalfCheetah-acc and Hopper-acc:

• Speed of lead car 𝑣𝑡+1 = 𝑣𝑡 + ∆𝑣, where ∆𝑣 ∼ 𝑁 (µ, 𝜎) is the change of speed 

• Ant-cross:

• Obstacle position 𝑦𝑡 ∼ 𝑁 µ, 𝜎
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Experiments: Locomotion Control with 
Dynamic Contexts
• Tasks

• Context transitions:
• HalfCheetah-acc and Hopper-acc:

• Speed of lead car 𝑣𝑡+1 = 𝑣𝑡 + ∆𝑣, where ∆𝑣 ∼ 𝑁 (µ, 𝜎) is the change of speed 

• Ant-cross:

• Obstacle position 𝑦𝑡 ∼ 𝑁 µ, 𝜎

• Will change 𝜇 and 𝜎 to other values to test robustness against context 
disturbances
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Experiments: Locomotion Control with 
Dynamic Contexts
• Overall average returns

• Our algorithm RS-SAC
• achieves better performance in HalfCheetah-acc and Hopper-acc
• achieves competitive performance in Ant-cross

RS-SAC SAC DR-SAC PR-SAC SC-SAC

HalfCheetah-acc 1622.8 1144.8 1251.6 1292.1 1474.8

Hopper-acc 2044.8 1921.6 1894.3 1621.8 1989.2

Ant-cross 340.7 341.6 288.5 83.7 41.3



Experiments: Real-world Inventory Control

• Context variable: customer demand
• Large uncertainty



Experiments: Real-world Inventory Control

• Context variable: customer demand
• Large uncertainty

Competitive in training Outperform other baselines in testing



Summary

• We introduce robust situational MDP which captures the disturbances in context transitions

• We propose the softmin smoothed robust Bellman operator to apply to existing deep RL 
algorithms (e.g., SAC)

• Experiments on Locomotion Control tasks with dynamic contexts and inventory control tasks 
show that our algorithm is more robust to context disturbances
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