

A Conditional Normalizing Flow for Accelerated Multi-Coil MR Imaging

Jeffrey Wen¹, Rizwan Ahmad¹, Philip Schniter¹

¹The Ohio State University, Columbus, OH, US

This work was supported by NIH Grant R01EB029957

Introduction

- Magnetic Resonance Imaging (MRI)
 - Provides high contrast for soft tissue
 - ✓ No ionizing radiation
 - Slow scan times X

- Accelerated MRI
 - Samples below the Nyquist rate
 - Requires a reconstruction model for diagnostic-quality images

2

The Ohio State University

Motivation

- Accelerated MRI reconstruction is ill-posed
 - Many possible reconstructions for a given set of measurements, y
 - Distribution of plausible image is the posterior, $p(\boldsymbol{x}|\boldsymbol{y})$
- Traditional reconstruction methods output only a **single** estimate
- Objective: Draw many samples from posterior
 - **Enables uncertainty quantification**

Zero-filled, y

Posterior Sampling Method

$\{\widehat{\boldsymbol{x}}_i\}_{i=1}^P$

Std Dev

Background – Conditional Normalizing Flows (CNF)¹

THE OHIO STATE UNIVERSITY

- Big Idea: Model target distribution $p_{x|y}$ by transforming base distribution $p_z = \mathcal{N}(0, I)$
 - Use a series of invertible transformations

> Find
$$\overline{h}_{\theta}$$
 so $\hat{p}_{x|y}(x|y;\theta) \approx p_{x|y}(x|y)$

Advantages

- Simple maximum likelihood training
 - $\max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \ln \hat{p}_{\boldsymbol{x}|\boldsymbol{y}}(\boldsymbol{x}^{(i)}|\boldsymbol{y}^{(i)};\boldsymbol{\theta})$
- Fast sampling
- Easy evaluation of $\hat{p}_{\boldsymbol{x}|\boldsymbol{y}}(\boldsymbol{x}|\boldsymbol{y};\boldsymbol{\theta})$

Previous CNF applications limited to singlecoil, magnitude MRI²

[1] Ardizzone et al. Conditional invertible neural networks for diverse image-to-image translation. arXiv:2105.02104, 2021.

[2] Denker et al. Conditional invertible neural networks for medical imaging. J. Imaging, 7(11):243, 2021a.

Change of Variable F

 $\hat{p}_{\boldsymbol{x}|\boldsymbol{y}}(\boldsymbol{x}|\boldsymbol{y};\boldsymbol{\theta}) = p_{\boldsymbol{z}}(\boldsymbol{x}|\boldsymbol{y};\boldsymbol{\theta})$

Formula:
$$(h_{\theta}^{-1}(\boldsymbol{x}, \boldsymbol{y})) \left| \det \left(\frac{\partial h_{\theta}^{-1}(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{x}} \right) \right|$$

Methods - Model

THE OHIO STATE UNIVERSITY

[3] Dinh et al. Density estimation using Real NVP. In Proc. Int. Conf. on Learn. Rep., 2017. [4] Ronneberger et al. U-Net: Convolutional networks for biomedical image segmentation. In Proc. Intl. Conf. Med. Image Comput. Comput. Assist. Intervent., pp. 234–241, 2015.

- \succ Flow, h_{θ}
 - Multi-scale RealNVP³ architecture
 - 3 downsampling layers
 - 20 flow steps per layer

\succ Conditioning Network, g_{θ}

- Uses a pretrained UNet⁴
 - 128 initial channels, 4 pooling • layers
- CNN to process features to h_{θ}

Training: Null-space **Projections**

Quantitative Results

- Golden Ratio Offset (GRO)⁶ mask
- R = 4 Acceleration
- Compressed to 8 virtual coils

Multi-Coil fastMRI Knee:

Model	PSNR [*] (dB)个	SSIM [*] ↑	FID [*] ↓	FID ^{**} ↓	cFID [*] ↓	cFID ^{**} ↓	Time
Score ⁷	34.15 ± 0.19	0.876 ± 0.004	<u>4.49</u>		4.49		15min
sCNF ²	32.93 ± 0.17	0.849 ± 0.005	7.32	5.78	8.49	6.51	<u>66ms</u>
Ours	<u>35.23 ± 0.22</u>	<u>0.889 ± 0.005</u>	4.68	<u>2.55</u>	<u>3.96</u>	<u>2.44</u>	108ms

 \pm Standard Error, * Computed on 72 test images, P = 8, ** Computed on 2188 test images, P = 8

Multi-Coil fastMRI Brain:

Model	PSNR [*] (dB)↑	SSIM [*] ↑	FID*↓	FID ^{**} ↓	cFID*↓	cFID ^{**} ↓	Time
Langevin ⁸	37.88 ± 0.41	0.904 ± 0.006	6.12		5.29		14min
CGAN ⁹	37.28 ± 0.19	0.941 ± 0.003	5.38	4.06	6.41	4.28	<u>112ms</u>
Ours	<u>38.85 ± 0.23</u>	<u>0.950 ± 0.001</u>	<u>4.13</u>	<u>2.37</u>	<u>4.15</u>	<u>2.44</u>	177ms

± Standard Error, * Computed on 72 test images, P = 32, ** Computed on 2484 test images, P = 8

[2] Denker et al. Conditional invertible neural networks for medical imaging. J. Imaging, 7(11):243, 2021a. [5] Zbontar et al. fastMRI: An open dataset and benchmarks for accelerated MRI. arXiv:1811.08839, 2018. [6] Joshi et al. Technical report (v1.0)-pseudo-random cartesian sampling for dynamic MRI. arXiv:2206.03630, 2022.

[7] Chung et al. Score-based diffusion models for accelerated MRI. Med. Image Analysis, 80:102479, 2022a. [8] Jalal et al. Robust compressed sensing MRI with deep generative priors. In Proc. Neural Inf. Process.

Syst. Conf., 2021a.

[9] Adler et al. Deep Bayesian inversion. arXiv:1811.05910, 2018.

0e+00 1e-05 2e-05

0e+00 1e-05 2e-05 3e-05

Results – Posterior Samples

- Posterior Samples
 - Show meaningful variation
 - Consistent with measurements
- Standard Deviation Map
 - Visualize pixel-wise variation
- Sample Average
 - Maximizes PSNR
- Maximum a Posteriori (MAP)
 - Most probable reconstruction
 - arg max ln $\hat{p}_{x|y}(x|y)$ s.t. $A^+Ax = y$

Conclusion

- Propose first conditional normalizing flow (CNF) for complex, multicoil MRI
 - Outperforms existing posterior sampling methods
 - Maintains fast inference
- Gives access to
 - Posterior samples
 - Standard deviation map
 - Sample average
 - MAP estimate