
➢ To this end, we propose a novel Value-Aware MI Maximization to extract the superior global 

information into 𝑧𝑖:

ℒ𝜙𝑖

VMM = −𝔼𝐷

𝑉𝜁 𝑠𝑡 − min𝑠𝑗∼𝐷 𝑉𝜁 𝑠𝑗

max𝑠𝑗∼𝐷 𝑉𝜁 𝑠𝑗 − min𝑠𝑗∼𝐷 𝑉𝜁 𝑠𝑗

𝐼𝑡 𝑧𝑖
𝑡 , 𝑠𝑡

where 𝑉𝜁 𝑠𝑡 is a value function and optimized by ℒ𝜁 = 𝔼𝑠∼𝐷 (𝑉(𝑠) − 𝐹(𝑠))2 . 𝐹 𝑠 = 𝑟 +

 max 𝑄𝜓′ 𝑠′, 𝜋marl 𝑠′ , ℚ𝜃′ 𝑠′, 𝜋𝑗 𝑠′ , 𝑊𝑗

➢ Finally, the loss function of 𝑍𝜙𝑖
𝑜𝑖 is defined as:

ℒ𝜙𝑖
= ℒ𝜙𝑖

VFM + 𝛽ℒ𝜙𝑖

VMM

Improving MARL with Collaborative Evolution

➢ Based on the shared observation representation encoder 𝑍𝛷𝑖
the policies of different 

teams controlling the same agents optimize their policy representations more efficiently 

Since 1) Policy optimization occurs in a linear policy space. 2) The optimization utilizes 

diverse samples collected by all teams. 

ℒMARL Wmarl = −𝔼s∼𝒟 Qψi
s, πmarl (s)

➢ To achieve more efficient evolution: we design the agent-level crossover and mutation for 

both team and individual exploration.  
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RACE: Improve Multi-Agent Reinforcement Learning with 

Representation Asymmetry and Collaborative Evolution
Necessary Background and Problem Statement

Multi-Agent Reinforcement Learning

➢ In MARL, individual agents interact with the environment and with each other, 

collecting samples and receiving reward signals to evaluate their decisions. By 

leveraging value function approximation, MARL optimizes policies through 

gradient updates. However, MARL often faces the following challenges:

➢ (Low-quality reward signals) The reward signals are often of low quality 

(e.g., deceptive, sparse, delayed, and team-level), making it challenging to 

obtain accurate value estimates.

➢ (Low exploration for collaboration) The gradient-based optimization 

approach may struggle to efficiently explore the multi-agent policy space 

and facilitate collaboration.

➢ (Non-stationarity) As the agents learn concurrently and continuously 

influence each other, breaking the Markov assumption on which most single 

agent RL algorithms are based. 

➢ (Partial observations) When agents have partial observations of their 

environment, making policy optimization even more challenging. 
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Motivation
➢ (Complementarity) EA offers numerous strengths that can complement the 

weaknesses of MARL. 

➢ (Research Gap) However, the efficient integration of both approaches in 

complex multiagent collaborative tasks has not been thoroughly investigated. 

➢ To this end, we propose a novel framework called Representation Asymmetry 

and Collaborative Evolution (RACE) which combines EA with MARL to achieve 

efficient collaboration.

➢ RACE introduces a population of teams. Typically, each team maintains separate 

policies for decision-making and optimization. However, this independent policy 

construction limits knowledge sharing across teams and makes exploration in large 

policy spaces inefficient.

➢ We propose Representation-Asymmetry Team Construction to enable efficient 

knowledge sharing and policy exploration. Specifically, the policies that control the 

same agent in different teams are composed of a shared nonlinear observation 

representation encoder. Formally, we summarize the construction of individual, team, 

and population in RACE below:

Experiments (Both Continuous and Discrete Tasks)

Shared Representation: Value Function Maximization

Figure 2: The conceptual illustration of Representation-Asymmetry Team Construction on 3-Agent Hopper task. 

Method
Representation-Asymmetry Team Construction

P𝐨𝐥𝐢𝐜𝐲 𝐢 𝐨𝐟 𝐭𝐞𝐚𝐦 𝐣: 𝛑𝐣
𝐢 𝐨𝐭

𝐢 = 𝐚𝐜𝐭 𝐙𝛟𝐢
𝐨𝐭

𝐢 ⊤
𝐖𝐣,[𝟏:𝐝]

𝐢 + 𝐖𝐣,[𝐝+𝟏]
𝐢

𝐓𝐞𝐚𝐦 𝐩𝐨𝐥𝐢𝐜𝐲 𝐨𝐟 𝐭𝐞𝐚𝐦 𝐣: 𝛑𝐣 𝐬𝐭 = 𝛑𝐣
𝟏 𝐨𝐭

𝟏 , ⋯ , 𝛑𝐣
𝐍 𝐨𝐭

𝐍

𝐂𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐞𝐚𝐦 𝐣: 𝐖𝐣 = 𝐖𝐣
𝟏, 𝐖𝐣

𝟐, ⋯ , 𝐖𝐣
𝐍

𝐓𝐞𝐚𝐦 𝐏𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧: ℙ = 𝐖𝟏, 𝐖𝟐, ⋯ , 𝐖𝐧

➢ RACE can significantly improve the basic MARL methods and outperform other baselines. 

Notably, our work demonstrates, for the first time, that EA has the capability to significantly 

enhance MARL performance in complex collaborative tasks.

Evolutionary Algorithm

➢ Evolutionary Algorithm (EA) simulates the 

natural process of genetic evolution and 

does not rely on gradient information for 

policy optimization, which has been 

demonstrated to be competitive with 

RL. Unlike RL which typically maintains 

only one policy, EA maintains a 

population of individuals and performs 

iterative evolution according to policy 

fitness. The fitness is typically defined as 

the average Monte Carlo (MC) return over 

some episodes

➢ Evolutionary Algorithm (EA) possesses several key strengths:

➢ EA does not require RL value function approximation and directly evolves 

individuals within the population according to fitness, i.e., the cumulative 

rewards. This makes EA more robust to reward signals.

➢ EA is not reliant on the Markov property in problem formulation and 

evolves policies from the team perspective, thereby circumventing the 

non-stationarity problem encountered in MARL.

➢ EA has strong exploration ability, good robustness, and stable 

convergence.

Figure 1: Evolutionary Algorithm optimization process.

➢ The team architecture poses two demands: 1) The shared observation representation 

encoder 𝑍𝛷𝑖
should provide useful knowledge about collaboration and tasks. 2) 

The knowledge is required to be beneficial to all teams, not just one particular team. 

➢ Thus we propose Value Function Maximization to extract the information:

ℒ𝜙𝑖

VFM = −𝔼𝒟,ℙ 𝑄𝜓 𝑠, 𝜋𝑚𝑎𝑟𝑙(𝑠) + ℚ𝜃 𝑠, 𝜋𝑗(𝑠), 𝑊𝑗

➢ Except for 𝑄(𝑠, 𝑢), We learn a centralized Policy-extended Value Function 

Approximator (PeVFA) to estimate the value for the policy representations in ℙ:

ℒ𝜃 = 𝔼𝒟 𝑟 + 𝛾ℚ𝜃′ 𝑠′, 𝜋𝑗 𝑠′ , 𝑊𝑗 − ℚ𝜃 𝑠, 𝑢, 𝑊𝑗
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➢ Only using the value information is inadequate since most tasks in Multi-Agent systems 

are partially observable, and thus non-stationarity throughout the execution and 

learning phases is exacerbated.

➢ Thus we propose to maximize the mutual information (MI) between the shared 

observation representations 𝑧𝑖 = 𝑍𝜙𝑖
𝑜𝑖 and global state s to make 𝑧𝑖 reflect global 

information thus alleviating the problem of partial observations. 

𝐼 𝑧𝑖; 𝑠 ≥ sup𝜔∈Ω 𝔼ℙ𝒮𝒵𝑖
−𝑠𝑝 −𝑇𝜔 𝑠𝑡 , 𝑧𝑖,𝑡 − 𝔼ℙ𝒮⊗ℙ𝓏𝑖

𝑠𝑝 𝑇𝜔 𝑠𝑡 , 𝑧𝑖,𝑘

𝐼𝑙𝑏 𝑧𝑖;𝑠

➢ However, maximizing MI with inferior states may induce a negative influence on 

shared observation representations from the global information of poor collaboration, 

leading to suboptimality (PMIC, Li et al., 2022).

Figure 3: Performance comparison between RACE and baselines in Multi-Agent MuJoCo (All in MATD3 version).

Figure 4: Test win rate comparison between RACE and baselines in SMAC (All in FACMAC version).

Shared Representation: Value-Aware Mutual Information Maximization
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