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Metric Learning Overview

Query Image Nearest neighbors in embedding space
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Image Source: Zhong et al. CVPR 2017
Ramzi et al. Neurips 2021

Existing methods include contrastive, triplet, ranking, and classification losses
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Samples with the same label should be closer than samples with different labels

Applications: product retrieval, person re-identification, vehicle re-identification, search by image

Learn an embedding space where similar samples are close together and dissimilar samples are far apart

Discard after training
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Metric Learning State-of-the-Art

Contrastive: Pull together similar pairs and push apart dissimilar pairs
* Disadvantage: fixed margin values

Triplet: Make positive samples closer than negative samples
* Disadvantage: triplet sampling is hard

Ranking: Rank positive samples closer than negative samples by maximizing average precision

Classification: Train a classifier then throw away the last linear layer
* Disadvantage: Needs to be finely tuned. Not good on tasks with many labels
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Problem with Metric Learning Datasets

White-necked Raven Common Raven

Product 1 Product 3 Product 2

| © . i )

Figure 1. Examples of metric learning labels which are inconsistent
with semantic information from two standard benchmarks: CUB
(top) and SOP (bottom). These labels are caused by a visual feature
which is not present or barely visible.




Our Method Overview

Sum of three losses

* Part 1: Contextual similarity optimization
e Pull apart contexts of dissimilar samples and push together contexts of similar samples

* Context means the set of closest neighbors to a sample

* Part 2: Similarity reqularization
* Minimize difference between average similarity of all pairs and a fixed value

(2) Optimize intersection of
(1) Optimize ranking neighborhood sets
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e Part 3: Standard fixed margin contrastive loss
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How to Calculate the contextual loss
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. Truth: 1 if same label, 0 otherwise.



How to Calculate the contextual loss Contextual similarity:

calculated based on
cosine similarity matrix.
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. Truth: 1 if same label, 0 otherwise.



How to Calculate the contextual loss Contextual similarity:

calculated based on
cosine similarity matrix.
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@ Truth: 1 if same label, 0 otherwise
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* The contextual similarity captures neighborhood
relations.

* The contextual similarity matrix is a function of the
cosine similarity matrix.

e The contextual similarity is a number between 0 and 1
predicting the true similarity.

* Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.



How to Calculate the contextual loss Contextual similarity:

Shading represents neighborhood set.

calculated based on
cosine similarity matrix.
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Truth: 1 if same label, 0 otherwise.

The contextual similarity captures neighborhood
relations.

The contextual similarity matrix is a function of the
cosine similarity matrix.

The contextual similarity is a number between 0 and 1
predicting the true similarity.

Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.



How to Calculate the contextual loss Contextual similarity:

iand j have 3 out of 4
neighbors in common.
So contextual similarity = 3/4
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Truth: 1 if same label, 0 otherwise.

The contextual similarity captures neighborhood
relations.

The contextual similarity matrix is a function of the
cosine similarity matrix.

The contextual similarity is a number between 0 and 1
predicting the true similarity.

Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.
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Implementation of contextual loss in PyTorch

4 N
class GreaterThan (autograd.Function):

# Implements theta with artifact gradient
def forward(x, vy):
return (x >= y).float ()
def backward(qg) :
return g * alpha,

# Returns gradient w.r.t (x, vy)
- g * alpha

def get_contextual_similarity (s, k, eps):
D=2-2 =% s

Dk = —(-D) .topk (k) .values|[:,—-1:]
Nk_mask = GreaterThan(-D + eps, -Dk.detach())
M_plus = (Nk_mask @ Nk_mask.T)

Nk_mask_not = 1 - Nk_mask

Workaround for
undifferentiable heaviside

# Squared Euclidean distance
# Distance to k—-th neighbor

/ Nk_mask.sum(dim=1) .detach ()

M_minus = (Nk_mask_not @ Nk_mask_not.T)

/ Nk_mask_not.sum(dim=1) .detach()
Ww_1= 0.5 =% (M_plus + M_minus) == Nk_mask
# Distance to k/2-th neighbor
Dk_over_2 = —(-D) .topk(k//2) .values[:,-1:]
Nk_over_2_mask = GreaterThan(-D + eps, -Dk_over_ Z.detach())
Rk_over_2_mask = Nk_over_Z_mask * Nk_over_2_mask.T
W_2 = (Rk_over_2_mask @ W_1) / Rk_over_2_mask.sum(dim=1)
return 0.5 = (W_2 + W_2.T)
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 Contextual loss value correlates
with 1-mAP (a ranking metric)
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* Gradients “look nice”.
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Contextual loss is robust and generalizable
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Table 1. Comparison of train and test accuracy on CUB between
Lcontext and Lecontext With gradient corrected according to Eq. 10.

CUB Leonext  With gradient correction

Train R@1 87.0 02.9
Test R@1 71.4 65.4




Contextual loss is robust and generalizable
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Table 1. Comparison of train and test accuracy on CUB between
Lcontext and Leonext With gradient corrected according to Eq. 10.

CUB Leonext  With gradient correction

Train R@1  87.0 29 %
Test R@1 71.4 65.4 ‘
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Contextual loss is robust and generalizable (2)
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Results

We achieve strong Recall @
1 results on four diverse
benchmarks

R @ 1 is the percentage of
samples in the test set
where the closest test
sample has the same label

R @ k is the percentage of
samples in the test set
where at least one of the k
closest samples has the
same label

CUB Cars

Method R@] R@2 R@4 R@8 R@1 R@2 R@4 R@8

Contrastive 685+03 783 +£0.1 86.0£0.2 91.3 £0.1 854 £0.2 91.1 £0.3 94.6 0.3 96.8 £+ 0.1

Triplet 67302 779 +0.1 8560291201 77.6 £ 1.3 854 £0.8 90.8 =0.7 94.1 = 0.4
NtXent 65.7+04 763 +£0.2 843 £04 90.0£04 79.0£0.6 86.0 0.3 91.04+-0.2 9441+ 0.3
MS 689 05 78504 86.0 0.6 91.4 0.5 88.7x04 93.0£0.2 95.7 0.1 97.3 = 0.1
N-Softmax 61.3 73.9 83.5 90.0 84.2 90.4 944 96.9

ProxyNCA++t1 69.0 = 0.8 79.8 = 0.7 87.3 = 0.7 92.7 =04 86.5 =04 925 £ 0.3 95.7 £ 0.2 97.7 £ 0.1

Fast-AP 633 +0.1 73.7+04 822+0.3 88.5+02 747+04 82.5+0.7 88.0+0.6 92.2+0.2
Smooth-AP 66.5+09 76.6 £0.5 848 +£0.6 90.8 =04 81.1 £0.2 87.8 £0.4 92.2 +0.3 95.1 =£0.3
ROADMAP 68.7+0.5 783 +0.3 86.1 £0.3 91.1 =0.1 84.54+0.5 90.3 £0.0 93.9 + 0.0 96.2 + 0.1
Qurs 698 +02 798 +0.1 87.1 +0.1 923 +0.2 89.3 +0.0 93.7 £0.2 96.3 +-0.1 97.8 = 0.2
SOP mini-iNaturalist
Method R@1 R@10 R@100 R@1 R@4 R@16 R@32
Contrastive 8244+00 919+00 96.04+£00 435+0.1 627+0.1 77.6+0.1 83.2+0.1
Triplet 820+00 925+0.1 96.74+00 354+0.1 565+0.1 747+0.1 81.7=+0.1
NtXent 797 +£0.2 90.8+00 96.1 00 408+0.1 61.6+0.1 780+0.0 83.9+4+0.0
MS 81.4+00 914+00 96.14+0.1 449+0.1 639+0.1 784+0.1 83.9+0.1
N-Softmaxf 78.2 90.6 96.2 - - - -
ProxyNCA++7 80.7 0.5 92.0£0.3 96.7 £+ 0.1 - - - -
Fast-AP 80.34+0.1 91.0+0.1 96.0+00 356+02 558+0.1 72.8+00 79.34+0.0
Smooth-AP 820+00 92600 96.9+0.0 427+00 633+0.0 790+0.0 84.7+0.0
ROADMAP 83.1 0.1 926+0.0 96.6 =00 459+0.1 658+0.0 804+0.1 857 +0.0
Qurs 83.3+00 929+0.1 96.7+00 46.2+0.0 658 +0.1 802+0.1 854+0.1




Similarity Regularization

Problem: Some metric learning losses (such as ours) tend to make

samples close regardless of true similarity
Undesirable because only a small portion of embedding space is used

Solution: Regularize average similarity toward a fixed value
Note most directions in embedding space are orthogonal
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Conclusions

e Contributions
* We derive a highly non-trivial differentiable contextual loss function
* We propose a simple but novel similarity regularizer

* Our framework improves the state-of-the-art in supervised metric learning in
terms of Recall @ 1 accuracy

* Future work
* |Investigate theoretical convergence properties of proposed loss function

* Investigate why similarity regularizer works
* Extend to multi-label datasets, where similarity score is not binary
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