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Metric Learning Overview

• Learn an embedding space where similar samples are close together and dissimilar samples are far apart

• Samples with the same label should be closer than samples with different labels

• Applications: product retrieval, person re-identification, vehicle re-identification, search by image

• Existing methods include contrastive, triplet, ranking, and classification losses
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Metric Learning State-of-the-Art

• Contrastive: Pull together similar pairs and push apart dissimilar pairs

• Disadvantage: fixed margin values

• Triplet: Make positive samples closer than negative samples

• Disadvantage: triplet sampling is hard

• Ranking: Rank positive samples closer than negative samples by maximizing average precision

• Classification: Train a classifier then throw away the last linear layer

• Disadvantage: Needs to be finely tuned. Not good on tasks with many labels
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Problem with Metric Learning Datasets



Our Method Overview

Sum of three losses

• Part 1: Contextual similarity optimization

• Pull apart contexts of dissimilar samples and push together contexts of similar samples 

• Context means the set of closest neighbors to a sample

• Part 2: Similarity regularization

• Minimize difference between average similarity of all pairs and a fixed value

• Part 3: Standard fixed margin contrastive loss
(1) Optimize ranking

(2) Optimize intersection of 
neighborhood sets
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Implementation of contextual loss in PyTorch

Workaround for 
undifferentiable heaviside



Sanity Check

• Contextual loss value correlates 
with 1-mAP (a ranking metric)

• Contextual loss converges

• Gradients “look nice”.



Contextual loss is robust and generalizable
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Contextual loss is robust and generalizable (2)



Results

• We achieve strong Recall @ 
1 results on four diverse 
benchmarks 

• R @ 1 is the percentage of 
samples in the test set 
where the closest test 
sample has the same label

• R @ k is the percentage of 
samples in the test set 
where at least one of the k 
closest samples has the 
same label



Similarity Regularization

• Problem: Some metric learning losses (such as ours) tend to make 
samples close regardless of true similarity

• Undesirable because only a small portion of embedding space is used

• Solution: Regularize average similarity toward a fixed value
• Note most directions in embedding space are orthogonal



Conclusions

• Contributions
• We derive a highly non-trivial differentiable contextual loss function

• We propose a simple but novel similarity regularizer

• Our framework improves the state-of-the-art in supervised metric learning in 
terms of Recall @ 1 accuracy

• Future work
• Investigate theoretical convergence properties of proposed loss function

• Investigate why similarity regularizer works

• Extend to multi-label datasets, where similarity score is not binary
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