
Supervised Metric Learning to Rank for Retrieval 
via Contextual Similarity Optimization

Christopher Liao (Presenter), Theodoros Tsiligkaridis, Brian Kulis



Metric Learning Overview

• Learn an embedding space where similar samples are close together and dissimilar samples are far apart

• Samples with the same label should be closer than samples with different labels

• Applications: product retrieval, person re-identification, vehicle re-identification, search by image

• Existing methods include contrastive, triplet, ranking, and classification losses

Query Image Nearest neighbors in embedding space

Featu
re 

Extracto
r

Linear + 
Normalize

2048
ResNet feature

512
embedding

Projector
Linear + 

Normalize
2048

projector output

Loss

Discard after training

Image Source: Zhong et al. CVPR 2017
Ramzi et al. Neurips 2021 



Metric Learning State-of-the-Art

• Contrastive: Pull together similar pairs and push apart dissimilar pairs

• Disadvantage: fixed margin values

• Triplet: Make positive samples closer than negative samples

• Disadvantage: triplet sampling is hard

• Ranking: Rank positive samples closer than negative samples by maximizing average precision

• Classification: Train a classifier then throw away the last linear layer

• Disadvantage: Needs to be finely tuned. Not good on tasks with many labels

Contrastive Triplet

✓ ✓

Ranking (Average Precision)



Problem with Metric Learning Datasets



Our Method Overview

Sum of three losses

• Part 1: Contextual similarity optimization

• Pull apart contexts of dissimilar samples and push together contexts of similar samples 

• Context means the set of closest neighbors to a sample

• Part 2: Similarity regularization

• Minimize difference between average similarity of all pairs and a fixed value

• Part 3: Standard fixed margin contrastive loss
(1) Optimize ranking

(2) Optimize intersection of 
neighborhood sets



How to Calculate the contextual loss

𝑖 +

+

+

𝑗
-

-
-

Truth: 1 if same label, 0 otherwise.



How to Calculate the contextual loss

𝑖 +

+

+

𝑗
-

-
-

Truth: 1 if same label, 0 otherwise.

Contextual similarity:
calculated based on 
cosine similarity matrix.



How to Calculate the contextual loss

𝑖 +

+

+

𝑗
-

-
-

Truth: 1 if same label, 0 otherwise.

Contextual similarity:
calculated based on 
cosine similarity matrix.

• The contextual similarity captures neighborhood 
relations.

• The contextual similarity matrix is a function of the 
cosine similarity matrix.

• The contextual similarity is a number between 0 and 1 
predicting the true similarity.

• Example (left): Calculate contextual similarity between i 
and j. Two classes per batch, 4 samples per class.



How to Calculate the contextual loss

𝑖 +

+

+

𝑗
-

-

𝜀

𝜀

-

Truth: 1 if same label, 0 otherwise.

Contextual similarity:
calculated based on 
cosine similarity matrix.

Shading represents neighborhood set.

• The contextual similarity captures neighborhood 
relations.

• The contextual similarity matrix is a function of the 
cosine similarity matrix.

• The contextual similarity is a number between 0 and 1 
predicting the true similarity.

• Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.



How to Calculate the contextual loss

𝑖 +

+

+

𝑗
-

-

𝜀

𝜀

-

Truth: 1 if same label, 0 otherwise.

Contextual similarity:
calculated based on 
cosine similarity matrix.

Shading represents neighborhood set.

i and j have 3 out of 4 
neighbors in common.
So contextual similarity = 3/4 

• The contextual similarity captures neighborhood 
relations.

• The contextual similarity matrix is a function of the 
cosine similarity matrix.

• The contextual similarity is a number between 0 and 1 
predicting the true similarity.

• Example (left): Calculate contextual similarity between i 
and j. Two classes per batch, 4 samples per class.



𝑖 +

+

+

𝑗
-

-

𝜀

𝜀

-

How to Calculate the contextual loss

Truth: 1 if same label, 0 otherwise.

Contextual similarity:
calculated based on 
cosine similarity matrix.

• The contextual similarity captures neighborhood 
relations.

• The contextual similarity matrix is a function of the 
cosine similarity matrix.

• The contextual similarity is a number between 0 and 1 
predicting the true similarity.

• Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.

Shading represents neighborhood set.

i and j have 3 out of 4 
neighbors in common.
So contextual similarity = 3/4 



𝑖

+

+

+

𝜀
𝑗

--

-

𝜀

How to Calculate the contextual loss

Truth: 1 if same label, 0 otherwise.

Contextual similarity:
calculated based on 
cosine similarity matrix.

• The contextual similarity captures neighborhood 
relations.

• The contextual similarity matrix is a function of the 
cosine similarity matrix.

• The contextual similarity is a number between 0 and 1 
predicting the true similarity.

• Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.

✓



Implementation of contextual loss in PyTorch

Workaround for 
undifferentiable heaviside



Sanity Check

• Contextual loss value correlates 
with 1-mAP (a ranking metric)

• Contextual loss converges

• Gradients “look nice”.



Contextual loss is robust and generalizable

𝑖 +

+

+

𝑗
-

-

𝜀

𝜀

-



Contextual loss is robust and generalizable

𝑖 +

+

+

𝑗
-

-

𝜀

𝜀

-

❌

❌

https://emojipedia.org/cross-mark/
https://emojipedia.org/cross-mark/


Contextual loss is robust and generalizable (2)



Results

• We achieve strong Recall @ 
1 results on four diverse 
benchmarks 

• R @ 1 is the percentage of 
samples in the test set 
where the closest test 
sample has the same label

• R @ k is the percentage of 
samples in the test set 
where at least one of the k 
closest samples has the 
same label



Similarity Regularization

• Problem: Some metric learning losses (such as ours) tend to make 
samples close regardless of true similarity

• Undesirable because only a small portion of embedding space is used

• Solution: Regularize average similarity toward a fixed value
• Note most directions in embedding space are orthogonal



Conclusions

• Contributions
• We derive a highly non-trivial differentiable contextual loss function

• We propose a simple but novel similarity regularizer

• Our framework improves the state-of-the-art in supervised metric learning in 
terms of Recall @ 1 accuracy

• Future work
• Investigate theoretical convergence properties of proposed loss function

• Investigate why similarity regularizer works

• Extend to multi-label datasets, where similarity score is not binary


	Slide 1: Supervised Metric Learning to Rank for Retrieval via Contextual Similarity Optimization
	Slide 3: Metric Learning Overview
	Slide 4: Metric Learning State-of-the-Art
	Slide 5: Problem with Metric Learning Datasets
	Slide 6: Our Method Overview
	Slide 7: How to Calculate the contextual loss
	Slide 8: How to Calculate the contextual loss
	Slide 9: How to Calculate the contextual loss
	Slide 10: How to Calculate the contextual loss
	Slide 11: How to Calculate the contextual loss
	Slide 12: How to Calculate the contextual loss
	Slide 13: How to Calculate the contextual loss
	Slide 14: Implementation of contextual loss in PyTorch
	Slide 15: Sanity Check
	Slide 16: Contextual loss is robust and generalizable
	Slide 17: Contextual loss is robust and generalizable
	Slide 18: Contextual loss is robust and generalizable (2)
	Slide 19: Results
	Slide 20: Similarity Regularization
	Slide 21: Conclusions

