Supervised Metric Learning to Rank for Retrieval
via Contextual Similarity Optimization

Christopher Liao (Presenter), Theodoros Tsiligkaridis, Brian Kulis

MIT

LINCOLN
LABORATORY

Metric Learning Overview

Query Image Nearest neighbors in embedding space

-_— R ol - -
-
s - - = -

J010841X3

Image Source: Zhong et al. CVPR 2017
Ramzi et al. Neurips 2021

Existing methods include contrastive, triplet, ranking, and classification losses

Linear +
Normalize

Samples with the same label should be closer than samples with different labels

Applications: product retrieval, person re-identification, vehicle re-identification, search by image

Learn an embedding space where similar samples are close together and dissimilar samples are far apart

Discard after training

- =

512

ResNet feature

embedding

Projector
Linear +
Normalize

- =

Loss

2048

projector output

Metric Learning State-of-the-Art

Contrastive: Pull together similar pairs and push apart dissimilar pairs
* Disadvantage: fixed margin values

Triplet: Make positive samples closer than negative samples
* Disadvantage: triplet sampling is hard

Ranking: Rank positive samples closer than negative samples by maximizing average precision

Classification: Train a classifier then throw away the last linear layer
* Disadvantage: Needs to be finely tuned. Not good on tasks with many labels

Contrastive Triplet Ranking (Average Precision)
O = < t $ & t <& % @0

“@ O OO0 OV O XXeeee v

Problem with Metric Learning Datasets

White-necked Raven Common Raven

Product 1 Product 3 Product 2

| © . i)

Figure 1. Examples of metric learning labels which are inconsistent
with semantic information from two standard benchmarks: CUB
(top) and SOP (bottom). These labels are caused by a visual feature
which is not present or barely visible.

Our Method Overview

Sum of three losses

* Part 1: Contextual similarity optimization
e Pull apart contexts of dissimilar samples and push together contexts of similar samples

* Context means the set of closest neighbors to a sample

* Part 2: Similarity reqularization
* Minimize difference between average similarity of all pairs and a fixed value

(2) Optimize intersection of
(1) Optimize ranking neighborhood sets

-

[-:ours :+ (1 — A)[-:contrast + /%C'reg s .A
dD(i,p).> 0 -
® i,p - +)
o o

e Part 3: Standard fixed margin contrastive loss

-d-E-‘I- . 4—. . .
® &/
aD(i,j) <0

-

How to Calculate the contextual loss

1
context - _2 E yzj wz;
i,

i |

. Truth: 1 if same label, 0 otherwise.

How to Calculate the contextual loss Contextual similarity:

calculated based on
cosine similarity matrix.

.

1
context = 5 E (yij — wij)

Jli#7 t

. Truth: 1 if same label, 0 otherwise.

How to Calculate the contextual loss Contextual similarity:

calculated based on
cosine similarity matrix.

y

1
E : 2
ﬁcontexl - _2 Yij — wz’j)
i,

i |

@ Truth: 1 if same label, 0 otherwise
@ ® ’

* The contextual similarity captures neighborhood
relations.

* The contextual similarity matrix is a function of the
cosine similarity matrix.

e The contextual similarity is a number between 0 and 1
predicting the true similarity.

* Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.

How to Calculate the contextual loss Contextual similarity:

Shading represents neighborhood set.

calculated based on
cosine similarity matrix.

y

1
E : 2
ﬁcontexl - _2 Yij — wz’j)
6,71

i |

Truth: 1 if same label, 0 otherwise.

The contextual similarity captures neighborhood
relations.

The contextual similarity matrix is a function of the
cosine similarity matrix.

The contextual similarity is a number between 0 and 1
predicting the true similarity.

Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.

How to Calculate the contextual loss Contextual similarity:

iand j have 3 out of 4
neighbors in common.
So contextual similarity = 3/4

S

@O

4._

<~

Shading represents neighborhood set.

calculated based on
cosine similarity matrix.

y

1
E : 2
ﬁcontexl - _2 Yij — wz’j)
i,

i |

Truth: 1 if same label, 0 otherwise.

The contextual similarity captures neighborhood
relations.

The contextual similarity matrix is a function of the
cosine similarity matrix.

The contextual similarity is a number between 0 and 1
predicting the true similarity.

Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.

How to Calculate the contextual loss

iand j have 3 out of 4
neighbors in common.
So contextual similarity = 3/4

Shading represents neighborhood set.

Contextual similarity:
calculated based on
cosine similarity matrix.

y

1
E : 2
ﬁcontexl - _2 Yij — wz’j)
i,

i |

Truth: 1 if same label, 0 otherwise.

The contextual similarity captures neighborhood
relations.

The contextual similarity matrix is a function of the
cosine similarity matrix.

The contextual similarity is a number between 0 and 1
predicting the true similarity.

Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.

How to Calculate the contextual loss Contextual similarity:

calculated based on
cosine similarity matrix.

y

1
E : 2
ﬁcontexl - _2 Yij — wz’j)
i,

i |

Truth: 1 if same label, 0 otherwise.

The contextual similarity captures neighborhood
relations.

The contextual similarity matrix is a function of the
cosine similarity matrix.

The contextual similarity is a number between 0 and 1
predicting the true similarity.

Example (left): Calculate contextual similarity between i
and j. Two classes per batch, 4 samples per class.

Implementation of contextual loss in PyTorch

4 N
class GreaterThan (autograd.Function):

Implements theta with artifact gradient
def forward(x, vy):
return (x >= y).float ()
def backward(qg) :
return g * alpha,

Returns gradient w.r.t (x, vy)
- g * alpha

def get_contextual_similarity (s, k, eps):
D=2-2 =% s

Dk = —(-D) .topk (k) .values|[:,—-1:]
Nk_mask = GreaterThan(-D + eps, -Dk.detach())
M_plus = (Nk_mask @ Nk_mask.T)

Nk_mask_not = 1 - Nk_mask

Workaround for
undifferentiable heaviside

Squared Euclidean distance
Distance to k—-th neighbor

/ Nk_mask.sum(dim=1) .detach ()

M_minus = (Nk_mask_not @ Nk_mask_not.T)

/ Nk_mask_not.sum(dim=1) .detach()
Ww_1= 0.5 =% (M_plus + M_minus) == Nk_mask
Distance to k/2-th neighbor
Dk_over_2 = —(-D) .topk(k//2) .values[:,-1:]
Nk_over_2_mask = GreaterThan(-D + eps, -Dk_over_ Z.detach())
Rk_over_2_mask = Nk_over_Z_mask * Nk_over_2_mask.T
W_2 = (Rk_over_2_mask @ W_1) / Rk_over_2_mask.sum(dim=1)
return 0.5 = (W_2 + W_2.T)

0.020 -
*g 0.015 1 *g
. ~ L]
Sanity Check Coro)
0.1 0.2 0.3 0.4 0 2000 4000
1-mAP iteration

 Contextual loss value correlates
with 1-mAP (a ranking metric)

EL'DH trast

—(VL contrast, X — X)

Lcontext

—{VL context, X — X)
e Contextual loss converges

* Gradients “look nice”.

0 peesss==ssssss o= 0 =eosimmsamene o=

00 02 04 06 08 1.0 00 02 04 06 08 1.0
(X, x) {x, x)

Contextual loss is robust and generalizable

%

*é’ ‘A ‘
® &

<«-»

Table 1. Comparison of train and test accuracy on CUB between
Lcontext and Lecontext With gradient corrected according to Eq. 10.

CUB Leonext With gradient correction

Train R@1 87.0 02.9
Test R@1 71.4 65.4

Contextual loss is robust and generalizable

%

e ‘g @
® &

Table 1. Comparison of train and test accuracy on CUB between
Lcontext and Leonext With gradient corrected according to Eq. 10.

CUB Leonext With gradient correction

Train R@1 87.0 29 %
Test R@1 71.4 65.4 ‘

https://emojipedia.org/cross-mark/
https://emojipedia.org/cross-mark/

Contextual loss is robust and generalizable (2)

Label Noise Image Noise Limited Training Data

EI:I I I I EI:I I I I I I I I I I
0.0 0.1 0.2 0.0 0.1 0.2 0 o0& 07 08 09 10
Fraction of corrupted labels Fraction of corrupted images Fraction of training classes used

== M54+miner = Roadmap —i— Contextual —i— Contrastive

Results

We achieve strong Recall @
1 results on four diverse
benchmarks

R @ 1 is the percentage of
samples in the test set
where the closest test
sample has the same label

R @ k is the percentage of
samples in the test set
where at least one of the k
closest samples has the
same label

CUB Cars

Method R@] R@2 R@4 R@8 R@1 R@2 R@4 R@8

Contrastive 685+03 783 +£0.1 86.0£0.2 91.3 £0.1 854 £0.2 91.1 £0.3 94.6 0.3 96.8 £+ 0.1

Triplet 67302 779 +0.1 8560291201 77.6 £ 1.3 854 £0.8 90.8 =0.7 94.1 = 0.4
NtXent 65.7+04 763 +£0.2 843 £04 90.0£04 79.0£0.6 86.0 0.3 91.04+-0.2 9441+ 0.3
MS 689 05 78504 86.0 0.6 91.4 0.5 88.7x04 93.0£0.2 95.7 0.1 97.3 = 0.1
N-Softmax 61.3 73.9 83.5 90.0 84.2 90.4 944 96.9

ProxyNCA++t1 69.0 = 0.8 79.8 = 0.7 87.3 = 0.7 92.7 =04 86.5 =04 925 £ 0.3 95.7 £ 0.2 97.7 £ 0.1

Fast-AP 633 +0.1 73.7+04 822+0.3 88.5+02 747+04 82.5+0.7 88.0+0.6 92.2+0.2
Smooth-AP 66.5+09 76.6 £0.5 848 +£0.6 90.8 =04 81.1 £0.2 87.8 £0.4 92.2 +0.3 95.1 =£0.3
ROADMAP 68.7+0.5 783 +0.3 86.1 £0.3 91.1 =0.1 84.54+0.5 90.3 £0.0 93.9 + 0.0 96.2 + 0.1
Qurs 698 +02 798 +0.1 87.1 +0.1 923 +0.2 89.3 +0.0 93.7 £0.2 96.3 +-0.1 97.8 = 0.2
SOP mini-iNaturalist
Method R@1 R@10 R@100 R@1 R@4 R@16 R@32
Contrastive 8244+00 919+00 96.04+£00 435+0.1 627+0.1 77.6+0.1 83.2+0.1
Triplet 820+00 925+0.1 96.74+00 354+0.1 565+0.1 747+0.1 81.7=+0.1
NtXent 797 +£0.2 90.8+00 96.1 00 408+0.1 61.6+0.1 780+0.0 83.9+4+0.0
MS 81.4+00 914+00 96.14+0.1 449+0.1 639+0.1 784+0.1 83.9+0.1
N-Softmaxf 78.2 90.6 96.2 - - - -
ProxyNCA++7 80.7 0.5 92.0£0.3 96.7 £+ 0.1 - - - -
Fast-AP 80.34+0.1 91.0+0.1 96.0+00 356+02 558+0.1 72.8+00 79.34+0.0
Smooth-AP 820+00 92600 96.9+0.0 427+00 633+0.0 790+0.0 84.7+0.0
ROADMAP 83.1 0.1 926+0.0 96.6 =00 459+0.1 658+0.0 804+0.1 857 +0.0
Qurs 83.3+00 929+0.1 96.7+00 46.2+0.0 658 +0.1 802+0.1 854+0.1

Similarity Regularization

Problem: Some metric learning losses (such as ours) tend to make

samples close regardless of true similarity
Undesirable because only a small portion of embedding space is used

Solution: Regularize average similarity toward a fixed value
Note most directions in embedding space are orthogonal

SOP R@1 = 80.7 SOP R@l =82.0
108 @ 108 @
- - - all pairs
W W o -
= 106 - = 106 - positive pairs
o & m— Uniform
8 1041 8101 | //
= — gl pairs 2 _
o 1071 positive pairs 3 1021
v —— unlfc:rm v
10° : 109 L ; : |
2.0 0.0 0.5 1.0 1.5

Eualldean dlstance Euclidean distance

Conclusions

e Contributions
* We derive a highly non-trivial differentiable contextual loss function
* We propose a simple but novel similarity regularizer

* Our framework improves the state-of-the-art in supervised metric learning in
terms of Recall @ 1 accuracy

* Future work
* |Investigate theoretical convergence properties of proposed loss function

* Investigate why similarity regularizer works
* Extend to multi-label datasets, where similarity score is not binary

	Slide 1: Supervised Metric Learning to Rank for Retrieval via Contextual Similarity Optimization
	Slide 3: Metric Learning Overview
	Slide 4: Metric Learning State-of-the-Art
	Slide 5: Problem with Metric Learning Datasets
	Slide 6: Our Method Overview
	Slide 7: How to Calculate the contextual loss
	Slide 8: How to Calculate the contextual loss
	Slide 9: How to Calculate the contextual loss
	Slide 10: How to Calculate the contextual loss
	Slide 11: How to Calculate the contextual loss
	Slide 12: How to Calculate the contextual loss
	Slide 13: How to Calculate the contextual loss
	Slide 14: Implementation of contextual loss in PyTorch
	Slide 15: Sanity Check
	Slide 16: Contextual loss is robust and generalizable
	Slide 17: Contextual loss is robust and generalizable
	Slide 18: Contextual loss is robust and generalizable (2)
	Slide 19: Results
	Slide 20: Similarity Regularization
	Slide 21: Conclusions

