Are Random Decompositions all we need in High-Dimensional Bayesian Optimisation?

Juliusz Ziomek*, Haitham Bou-Ammar* ${ }^{*}$
*Huawei Noah's Ark Lab, †University College London

ICML23, 23 - 29 Jul 2023

Bayesian Optimisation

- Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function by using a surrogate Gaussian Process (GP) model

Bayesian Optimisation

- Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function by using a surrogate Gaussian Process (GP) model

- Based on the GP model, we optimise acqusition function to find most promising point to query next

Bayesian Optimisation

- Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function by using a surrogate Gaussian Process (GP) model

- Based on the GP model, we optimise acqusition function to find most promising point to query next
- This works great with a small number of dimensions; struggles in high-dimensional spaces

Bayesian Optimisation with Additive Functions

- One solution: Assume the additive function ([Kandasamy et al, 2015], [Rolland et al, 2018], [Han et al, 2021])

$$
f(\boldsymbol{x})=\sum_{c \in g} f_{c}\left(\boldsymbol{x}_{[c]}\right)
$$

for each group of dimensions c in decomposition g, for example if $g=\{(1,4),(2),(3)\}$:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1,4}\left(x_{1}, x_{4}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)
$$

Bayesian Optimisation with Additive Functions

- One solution: Assume the additive function ([Kandasamy et al, 2015], [Rolland et al, 2018], [Han et al, 2021])

$$
f(\boldsymbol{x})=\sum_{c \in g} f_{c}\left(\boldsymbol{x}_{[c]}\right)
$$

for each group of dimensions c in decomposition g, for example if $g=\{(1,4),(2),(3)\}$:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1,4}\left(x_{1}, x_{4}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)
$$

- Problem: If the function is black-box, we do not know g

Bayesian Optimisation with Additive Functions

- One solution: Assume the additive function ([Kandasamy et al, 2015], [Rolland et al, 2018], [Han et al, 2021])

$$
f(\boldsymbol{x})=\sum_{c \in g} f_{c}\left(\boldsymbol{x}_{[c]}\right)
$$

for each group of dimensions c in decomposition g, for example if $g=\{(1,4),(2),(3)\}$:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{1,4}\left(x_{1}, x_{4}\right)+f_{2}\left(x_{2}\right)+f_{3}\left(x_{3}\right)
$$

- Problem: If the function is black-box, we do not know g
- Existing methods learn g by maximum likelihood by selecting g that produces model with highest marginal likelihood $p(\mathcal{D} \mid g)$

Misleading decomposition learners

Misleading decomposition learners

- State-of-art Tree algorithm [Han et al, 2021] gets stuck in a sub-optimal mode

Misleading decomposition learners

- State-of-art Tree algorithm [Han et al, 2021] gets stuck in a sub-optimal mode
- This is because, in BO we have limited, local data \rightarrow hard to extrapolate, easy to overfit

Analysing decomposition rules

- Instead of relying on limited, local data, let us consider data-independent pre-defined schemes for choosing decompositions

Theorem (Corollary 4.2 in the paper)

Let the black-box function f be selected by an adversary from an RKHS \mathcal{H}^{g} of kernel k^{g}, defined over some decomposition g that is also selected by an adversary. After T rounds, a UCB-style $B O$ algorithm with an $S(t): \mathbb{Z}^{+} \rightarrow \mathcal{G}$ decomposition rule, incurs with a probability of at least $1-\delta_{a}-\delta_{B}$ the following total cumulative regret R_{T} :

where $B=\max _{t \in T}\left\|\hat{f}_{t}\right\|_{t}$ and $\|\cdot\|_{t}$ denotes the norm in \mathcal{H}_{t}.

Analysing decomposition rules

- Want both γ_{t} and ϵ_{t} to be "small"

Analysing decomposition rules

- Want both γ_{t} and ϵ_{t} to be "small"
- Making γ_{t} "small"
γ_{t} measures the "complexity" of proposed decompositions. If we restrict our scheme to only suggest tree decompositions [Han et al, 2021], we can favourably bound γ_{t}

Analysing decomposition rules

- Want both γ_{t} and ϵ_{t} to be "small"
- Making γ_{t} "small"
γ_{t} measures the "complexity" of proposed decompositions. If we restrict our scheme to only suggest tree decompositions [Han et al, 2021], we can favourably bound γ_{t}
- Making ϵ_{t} "small"
ϵ_{t} measures the mismatch between the true decomposition and the one we proposed. We show that for tree decomp., the scheme with lowest mismatch chooses decompositions uniformly at random.

Analysing decomposition rules

- Want both γ_{t} and ϵ_{t} to be "small"
- Making γ_{t} "small"
γ_{t} measures the "complexity" of proposed decompositions. If we restrict our scheme to only suggest tree decompositions [Han et al, 2021], we can favourably bound γ_{t}
- Making ϵ_{t} "small"
ϵ_{t} measures the mismatch between the true decomposition and the one we proposed. We show that for tree decomp., the scheme with lowest mismatch chooses decompositions uniformly at random.
- Our algorithm should select tree decompositions randomly!

Practical Algorithm

Algorithm RDUCB

1: Inputs: Black-box function f, evaluation budget N, initial budget $N_{\text {init }}$, exploration bonuses $\left\{\beta_{t}\right\}_{t=1}^{N}$
2: Evaluate $N_{\text {init }}$ random inputs in f \& populate $\mathcal{D}_{N_{\text {init }}}$
3: for $t=N_{\text {init }}+1$ to N do
4: \quad Sample tree decomposition g
5: \quad Fit a GP using \mathcal{D}_{t-1} with the kernel $k_{g}(\cdot)$
6: Maximise $\alpha_{t}^{\text {(add-UCB) }}\left(\boldsymbol{x} \mid \mathcal{D}_{t-1}\right)$ with message passing
7: Evaluate f on the suggested query \& add to \mathcal{D}_{t-1}
8: end for

Selected Empirical Results

(a) 250-d Stybtang Function

(b) 74-d misc05inf MIP Task

(c) 180-d DNA LassoBench Dataset

Performance as dimensionality increases

Plug\&Play for HEBO [Cowen-Rivers et al, 2022]

HEBO $=$ Multi-acquisition + Input warping + Evolution +BO
RDHEBO $=$ Random Decompositions + HEBO

Problem	HEBO	RDHEBO
MLP-Adam	92.68 ± 0.22	$\mathbf{9 3 . 6 7} \pm \mathbf{0 . 3 0}$
MLP-SGD	90.66 ± 0.81	$\mathbf{9 1 . 6 5} \pm \mathbf{0 . 1 0}$
DT	79.42 ± 0.45	$\mathbf{8 0 . 7 9} \pm \mathbf{0 . 1 5}$
RF	84.97 ± 0.32	$\mathbf{8 7 . 6 4} \pm \mathbf{2 . 0 0}$
Average	86.93 ± 0.45	$\mathbf{8 8 . 4 4} \pm \mathbf{0 . 6 4}$

References

Srinivas et al（2010）
Gaussian process optimization in the bandit setting：No regret and experimental design，ICML
Kandasamy et al（2015）
High dimensional Bayesian optimisation and bandits via additive models，ICML
Rolland et al（2018）
High－dimensional Bayesian optimization via additive models with overlapping groups，AISTATS
Han et al（2021）
High－dimensional Bayesian optimization via tree－structured additive models，AISTATS
－Cowen－Rivers et al（2022）
HEBO：pushing the limits of sample－efficient hyper－parameter optimisation，JAIR

