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Problem Definition

Problem Definition and Important Measures

Saddle Point Problem

L(x , y) := min
x∈X

max
y∈Y

f (x) + ϕ(x , y)− g(y). (1)

Gap function at z̄ = (x̄ , ȳ)

Gap(z̄) = max
z∈X×Y

{Q(z̄ , z) := L(x̄ , y)− L(x , ȳ)}.
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Problem Definition

Assumptions

ϕ(·, y) is Lxx -smooth, ϕ(x , ·) is Lyy -smooth and ϕ is Lxy -smooth, if
the followings hold for all x , x ′ ∈ X , y , y ′ ∈ Y respectively:

∥∇xϕ(x
′, y)−∇xϕ(x , y)∥ ≤ Lxx∥x ′ − x∥,

∥∇yϕ(x , y
′)−∇yϕ(x , y)∥ ≤ Lyy∥y ′ − y∥,

∥∇yϕ(x
′, y)−∇yϕ(x , y)∥ ≤ Lxy∥x ′ − x∥.
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Motivation of Study

Motivation of Study

In many problems, the following function is a nonsmooth function
which is hard to optimize.

P(x) : f (x) + max
y∈Y

ϕ(x , y). (2)

1 One way to smoothen this function is to use Nesterov’s
smoothing technique. This technique involves subtracting a
strongly convex regularizing function, resulting in a
convex-strongly-concave SPP.

2 We assume that f (x) is an easy function to evaluate. This
might not be true in many cases. Hence, linearization of f
might be a good approach to handle this problem.

3 A popular approach is using a linearized primal-dual method
(LPD).
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Motivation of Study

Linearized Primal-Dual method

Algorithm Linearized PD (LPD) method

1: Initialize x̃1 = x1 ∈ X , y1 ∈ Y
2: for t = 1, . . . ,K do
3: yt+1 ← arg min

y∈Y
⟨−Ax̃t , y⟩+ g(y) + 1

2τt
∥y − yt∥2

4: xt+1 ← argmin
x∈X
⟨∇f (xt) + A⊤yt+1, x⟩+ 1

2ηt
∥x − xt∥2

5: x̃t+1 ← xt+1 + θt(xt+1 − xt)
6: end for
7: return x̄K+1 =

∑K
t=1 γt+1xt+1∑K

t=1 γt+1
, ȳK+1 =

∑K
t=1 γt+1yt+1∑K

t=1 γt+1
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Motivation of Study

Convergence analysis of LPD

Theorem

For a µf -strongly-convex-concave bilinear SPP, LPD has the

optimal convergence rate of O(Lf +∥A∥
2

K2 ), and for a
µg -strongly-concave-convex bilinear SPP, it has convergence rate

of O(LfK + ∥A∥2
K2 ) where f is Lf -smooth.

Observation: Strong concavity can not handle the errors
caused by the linearization of f .
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Accelerated LPD (ALPD)

Accelerated LPD (ALPD)

Algorithm Accelerated Linearized PD (ALPD) method

1: Initialize x̄1 = x0 = x1 ∈ X , ȳ1 = y0 = y1 ∈ Y
2: for t = 1, . . . ,K do
3: x t ← (1− β−1t )x̄t + β−1t xt
4: vt ← (1 + θt)∇yϕ(xt , yt)− θt∇yϕ(xt−1, yt−1)
5: yt+1 ← arg min

y∈Y
⟨−vt +∇g(yt), y⟩+ 1

2τt
∥y − yt∥2

6: xt+1 ← argmin
x∈X
⟨∇f (x t) +∇xϕ(xt , yt+1), x⟩+ 1

2ηt
∥x − xt∥2

7: x̄t+1 = (1− β−1t )x̄t + β−1t xt+1

8: ȳt+1 = (1− β−1t )ȳt + β−1t yt+1

9: end for
10: return x̄K+1, ȳK+1
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Accelerated LPD (ALPD)

Convergence rates of ALPD for semi-linear and nonlinear
coupling

Theorem

Case 1: Semi-linear ϕ with Lxx = 0:

max
z∈X×Y

{Q(z̄K+1)} = O(Lf +Lyy
K2 +

L2xy
µgK2 )

Case 2: nonlinear ϕ with Lxx > 0:

max
z∈X×Y

{Q(z̄K+1)} = O(Lf +Lyy
K2 +

L2xy
µgK2 +

Lxx
K )

ALPD is not optimal at full nonlinearity.
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Inexact ALPD

Inexact ALPD

Algorithm Inexact ALPD Method

1: Initialize x̄1 = x0 = x1 ∈ X , ȳ1 = y0 = y1 ∈ Y
2: for t = 1, . . . ,K do
3: x t ← (1− β−1

t )x̄t + β−1
t xt

4: vt ← (1 + θt)∇yϕ(xt , yt)− θt∇yϕ(xt−1, yt−1)
5: yt+1 ← arg min

y∈Y
⟨−vt +∇g(yt), y⟩+ 1

2τt
∥y − yt∥2

6: xt+1 is a δt -approximate solution of the problem:

min
x∈X
⟨∇f (x t), x⟩+ ϕ(x , yt+1) +

1
2ηt
∥x − xt∥2

7: x̄t+1 ← (1− β−1
t )x̄t + β−1

t xt+1

8: ȳt+1 ← (1− β−1
t )ȳt + β−1

t yt+1

9: end for
10: return x̄K+1, ȳK+1
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Inexact ALPD

Complexity analysis of inexact ALPD

Theorem

Inexact ALPD requires O(
√

Lf +Lyy
ϵ ) gradient evaluation of ∇f and

∇yϕ, and requires O(
√
Lxx

ϵ3/4
log(1ϵ )) = Õ(

√
Lxx

ϵ3/4
) gradient evaluation

of ∇xϕ. Hence, the gradient complexity of ∇xϕ improves
significantly (c.f. O(Lxxϵ ) gradient complexity in ALPD).
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Numerical Experiment

Numerical Experiment: ALPD vs. LPD

The ℓq-norm penalty problem with linear constraints is

min
x∈X

f (x) + ρ∥Ax − b∥q ≡ min
x∈X

max
∥y∥p≤1

f (x) + ρ⟨y ,Ax − b⟩,

Smooth approximation of the nonsmooth penalty term using
Nesterov’s smoothing technique:

min
x∈X

max
∥y∥p≤1

{f (x) + ρ⟨ y ,Ax − b⟩ − µg

2 ∥y∥
2}, (3)
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Numerical Experiment

Numerical Experiment: ALPD vs. LPD
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Figure: Comparison of the methods in terms of the mean errors in primal
(top left), dual (top right) and Gap function (bottom) for 10 i.i.d.
instances of (3) with p = q = 2.
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Numerical Experiment

Numerical Experiment: ALPD vs. Inexact ALPD

Consider a penalty problem with non-linear constraints.

The corresponding coupling function in SPP becomes
nonlinear (Lxx > 0)
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Numerical Experiment

Numerical Experiment: ALPD vs. Inexact ALPD
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Figure: Comparison of the ALPD and inexact ALPD method and their
prox-g variants using the Gap function vs run-time (seconds) plot for 10
i.i.d. instances.
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Conclusion

Conclusion
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Conclusion

Thanks!

Question?
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