

Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning

Jaehyung Kim¹ Jinwoo Shin¹ Deogyeop Kang²

¹Korea Advanced Institute of Science and Technology (KAIST) ²University of Minnesota (UMN)

Importance of NLP Benchmarks

- Success of NLP systems has been driven by large human-annotated benchmarks
 - They guide the researchers in a right direction to develop methods
 - E.g., SQuAD (QA), GLUE (language understanding), and BIG-bench (large language models)

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under **gravity**. The main forms of precipitation include drizzle, rain, sleet, snow, **graupel** and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals **within a cloud**. Short, intense periods of rain in scattered locations are called "showers".

```
What causes precipitation to fall? gravity
```

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation? within a cloud

Example of SQuAD (100k+) [Rajpurkar et al. 2016]

Corpus	Train	Test	Task
CoLA	8.5k	1k	acceptability
SST-2	67k	1.8k	sentiment
MRPC	3.7k	1.7k	paraphrase
STS-B	7k	1.4k	sentence similarity
QQP	364k	391k	paraphrase
MNLI	393k	20k	NLI
QNLI	105k	5.4k	QA/NLI
RTE	2.5k	3k	NLI
WNLI	634	146	coreference/NLI

Summary of GLUE [Wang et al. 2019]

Diversity/scale of BIG-bench [Srivastava et al. 2022]

Construction of NLP Benchmarks

- These benchmarks are usually constructed by following steps
 - 1. Collecting (or writing) the relevant input texts
 - 2. Labeling input texts (or verifying) by human annotators

Example of procedure for constructing benchmark for NLI task [Nie et al. 2019]

Cost for Constructing NLP Benchmarks

- These benchmarks are usually constructed by following steps
 - 1. Collecting (or writing) the relevant input texts \rightarrow more costly and cumbersome
 - E.g., distribution shift or spurious patterns of input make model suffer being generalized [Gururangan et al. 2018; Karamcheti et al. 2021]
 - Hence, much higher cost is often paid to the collection process to keep the quality [Kaushik et al. 2020]
 - 2. Labeling input texts (or verifying) by human annotators

[Gururangan et al. 2018] Annotation Artifacts in Natural Language Inference Data, NAACL 2018 [Karamcheti et al. 2021] Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering, ACL 2021 [Kaushik et al. 2020] Learning the Difference that Makes a Difference with Counterfactually-augmented Data, ICLR 2020

Complementary Way to Annotate Existing Benchmarks

- Hence, it is preferable to pay additional human cost to auxiliary annotation
 - E.g., improving label quality with more annotators [Nie et al. 2020]
 - or obtaining finer task information with new label space [Williams et al. 2020]

Context	Hypothesis	Old Labels majority and i	New Labels ndividual labels	Source	е Туре
With the sun rising, a person is gliding with a huge parachute attached to them.	The person is falling to safety with the parachute	Entailment E E E N N	$\begin{array}{c} \text{Entailment} \\ \text{E}^{(50)} \ \text{N}^{(50)} \end{array}$	SNLI	Low agreements
A woman in a tan top and jeans is sitting on a bench wearing headphones.	A woman is listening to music.	Entailment E E N N E	Neutral $N^{(93)} E^{(7)}$	SNLI	Majority changed
A group of guys went out for a drink after work, and sitting at the bar was a real a 6 foot blonde with a fabulous face and figure to match.	The men didn't appreciate the figure of the blonde woman sitting at the bar.	Contradiction C N N C C		MNLI	Low agreements
In the other sight he saw Adrin's hands cocking back a pair of dragon-hammered pistols.	He had spotted Adrin preparing to fire his pistols.	Neutral N E N N E	Entailment $E^{(94)} N^{(5)} C^{(1)}$	MNLI	Majority changed

Dataset	Subset	Numerical	Basic	Reference	Tricky	Reasoning	Error
	All	40.8	31.4	24.5	29.5	58.4	3.3
A1	С	18.6	8.2	7.8	13.7	11.9	0.7
	Ν	7.0	9.8	7.1	6.4	31.3	1.0
	Ε	15.2	13.4	9.6	9.4	15.2	1.6
	All	38.5	41.2	29.4	29.1	62.7	2.5
A2	С	15.6	11.8	10.2	13.6	15.5	0.3
	Ν	8.1	12.8	9.1	7.4	30.0	1.4
	Ε	14.8	16.6	10.1	8.1	17.2	0.8
	All	20.3	50.2	27.5	25.6	63.9	2.2
A3	С	8.7	17.2	8.6	12.7	14.9	0.3
	Ν	4.9	13.1	8.2	4.6	30.1	1.0
	Ε	6.7	19.9	10.7	8.3	18.9	0.8

Analysis of existing NLI datasets with more annotations [Nie et al. 2020]

Analysis of ANLI with fine-grained annotation [Williams et al. 2020]

Complementary Way to Annotate Existing Benchmarks

- Hence, it is preferable to pay additional human cost to auxiliary annotation
 - E.g., improving label quality with more annotators [Nie et al. 2020]
 - or obtaining finer task information with new label space [Williams et al. 2020]

					Dataset	Subset	Numerical	Basic	Reference	Tricky	Reasoning	Error
						All	40.8	31.4	24.5	29.5	58.4	3.3
Context	Hypothesis	Old Labels majority and ju	New Labels	Source Type	A1	С	18.6	8.2	7.8	13.7	11.9	0.7
		majority and h				Ν	7.0	9.8	7.1	6.4	31.3	1.0
With the sun rising, a person is gliding with a huge parachute attached to them.	The person is falling to safety with the parachute	Entailment E E E N N	Entailment E ⁽⁵⁰⁾ N ⁽⁵⁰⁾	SNLI Low agreements		Е	15.2	13.4	9.6	9.4	15.2	1.6
A woman in a tan top and jeans is sitting on a bench wearing headphones	A woman is listening to music.	Entailment E E N N E	Neutral $N^{(93)} = F^{(7)}$	SNLI Majority changed		All	38.5	41.2	29.4	29.1	62.7	2.5
senen wearing neudphones.		EERITE	n L		A2	С	15.6	11.8	10.2	13.6	15.5	0.3
A group of guys went out for a drink after work,	The men didn't appreciate the figure of the blonde	Contradiction Contradictio	Contradiction	ontradiction MNLI Low agreements		N	8.1	12.8	91	74	30.0	14
and sitting at the bar was a real a 6 foot blonde	woman sitting at the bar.	CNNCC	C(co) N(co)			E	14.0	16.6	10.1	0 1	17.0	0.9
with a fabulous face and figure to match.						E	14.8	10.0	10.1	8.1	17.2	0.8
In the other sight he saw Adrin's hands cocking back a pair of dragon-hammered pistols.	He had spotted Adrin preparing to fire his pistols.	Neutral N E N N E	Entailment $E^{(94)} N^{(5)} C^{(1)}$	MNLI Majority changed		All	20.3	50.2	27.5	25.6	63.9	2.2
					A3	С	8.7	17.2	8.6	12.7	14.9	0.3
						Ν	4.9	13.1	8.2	4.6	30.1	1.0
						Е	6.7	19.9	10.7	8.3	18.9	0.8

Can we find a new alternative way to better exploit existing <u>benchmarks</u> (input texts and task labels) via auxiliary annotation?

Especially, for text classification

Task-specific Preference as Auxiliary Annotation

- Idea: using task-specific preference between input texts as auxiliary annotation
 - To improve the text classification system upon existing task annotations
 - Auxiliary preference learning provides additional informative training signal to model
 - By relatively ordering a pair of two texts and better calibrating them w.r.t task through "pair-wise" comparison

v.s. "instance-wise" task annotation

(c) Improved text classification

Concept of auxiliary preference learning and its empirical advantages

Prefer to Classify (P2C)

• Specifically, we propose following components for auxiliary preference learning

- Three different types of preference labels in practical scenario
 - Using large language model (generative), data annotation records (extractive), or crowd workers (subjective)
- Novel multi-task learning framework with task and preference labels: prefer-to-classify (P2C)

Multi-task learning with task and preference labels

Preference label with three different ways

4

Visual illustration of the proposed auxiliary preference learning for improving text classifier

- 3 different types of preference labels to apply auxiliary preference learning via P2C
 - Generative preference from large language models, e.g., GPT-3 [Brown et al. 2020]
 - Good quality from strong zero/few-shot generalization capability of LM, low cost, and easy to access

Τ	Septence A: (contences A and B, and pick a more {labels_ab[ldx]} sentence:.
	Sentence R: {sentences_a[idx]}
	Choices: [Sentence & Sentence B No Preference] Answer:
	choices. [Sentence A, Sentence B, No Frererence], Answer.

Prompt design to collect generative preference labels from GPT-3 [Brown et al. 2020]

• 3 different types of preference labels to apply auxiliary preference learning via P2C

- Extractive preference from data annotation records
 - If one sample has higher voting than the other sample as specific label, then it is assumed to be more preferred
 - Zero cost with good quality by better exploiting information within task annotions, but often hard to access

Illustration of extractive preference from existing data annotation records

- 3 different types of preference labels to apply auxiliary preference learning via P2C
 - Subjective preference from crowd workers
 - Obtained by directly asking the to humans, e.g., "which sentence is more positive?"
 - <u>Most accurate</u>, but it requires <u>high cost</u> and hence <u>hard to access</u>

	ction given bel	carefully:	
Goal: Read give You can get the Mark " <u>No Prefer</u> You can ignore r	n two sentences sentiment type (<u>rence</u> " when neit minor grammatic	& B) and pick a more positive, neutral, or negative sentence based on your ju , positive, neutral or negative) for each sentence. r of two sentences is preferred or can't represent the given sentiment category. or syntactic errors.	udgment.
Example			
Sentiment Type Sentence A: "I g Sentence B: "Si Output Choices Sentence A	: <u>Positive</u> got 3 veggies an he listened to my s : Sentence B	side of fries for over a 11 dollars if you like homecooked food" leas, asked questions to get a better idea about my style, and was excellent at off No Preference	ering advice as if I were a total pleb.*
Please carefully Once you <u>choos</u> Otherwise, you	read the input answers on ev can't end the tas	tt first. Then, click the appropriate category of button for each style (<u>no multi-cho</u> <u>/ question</u> , you can click the submit button at the bottom to end the task. The estimated time of a task is 3-4 minutes.	pice is allowed).
NOTE: If one ma	akes <u>random res</u>	nses or inappropriate answers detected on our validation samples, they will be en	tirely blocked from our future studies.
NOTE: If one ma	akes <u>random res</u>	nses or inappropriate answers detected on our validation samples, they will be en	tirely blocked from our future studies.
NOTE: If one ma	akes <u>random res</u>	nses or <u>inappropriate answers</u> detected on our validation samples, they will be en	tirely blocked from our future studies.
NOTE: If one mi Question 1 Sentiment Type Sentence A: Thi Sentence B: Thi Output Choices	exect state Positive is was the best r e restaurant was s: •	nses or inappropriate answers detected on our validation samples, they will be en	tirely blocked from our future studies.

Used interface to collect subjective preference labels from crowd workers via AMT

• 3 different types of preference labels to apply auxiliary preference learning via P2C

- Generative / Extractive / Subjective preference labels
 - <u>Accuracy</u>: subjective > extractive ~= generative
 - Cost: extractive > generative >> subjective (e.g., 1.6\$ for 10 subjective labels, while 8.0\$ for 5,000 generative labels)
 - <u>Accessibility</u>: generative > extractive > subjective

A: We enjoyed our first and last meal in Toronto at Bombay Palace and I can't think of a better way to book our journey.	e, B : So glad I finally tried this place because if confirmed my suspicions about that critic who rated it a 10.
Sentiment: <u>Positive</u> , Generative Preference: $\mathbf{A} \succ \mathbf{B}$, Extrac	ctive Preference: B ≻ A , Subjective Preference: No preference
A: The buffalo chicken was not good, but very costly.	B : There was so much stuff from all over that I had to leave to find an ATM for more cash to pay for it all.
Sentiment: <u>Negative</u> , Generative Preference: $\mathbf{A} \succ \mathbf{B}$, E	Extractive Preference: $\mathbf{B} \succ \mathbf{A}$, Subjective Preference: $\mathbf{B} \succ \mathbf{A}$
A: The hotel offered complimentary breakfast.	B : My friends had a full acrylic and the other had a fill. It looked so good.
Sentiment: <u>Positive</u> , Generative Preference: $\mathbf{A} \succ \mathbf{B}$, E:	xtractive Preference: $\mathbf{A} \succ \mathbf{B}$, Subjective Preference: $\mathbf{A} \succ \mathbf{B}$

Examples of the collected preference labels on same pair of sentences from DynaSent-R2 [Potts et al. 2021]

Overlap between preferences

Prefer to Classify (P2C): Multi-task Learning

- Classifier is trained using task labels and preference labels jointly with
 - Diverse multi-preference heads for better preference modeling
 - For preference predictor, we add preference prediction head W_{pref} on classifier $g_{\phi}(\mathbf{x})$ (e.g., BERT)

$$P_{\psi}[\mathbf{x}^{1} \succ \mathbf{x}^{0}; y_{\mathtt{task}}] = \frac{\exp\left(h_{\psi}(\mathbf{x}^{1}, y_{\mathtt{task}})\right)}{\sum_{i \in \{0,1\}} \exp\left(h_{\psi}(\mathbf{x}^{i}, y_{\mathtt{task}})\right)} \qquad h_{\psi}(\mathbf{x}, y_{\mathtt{task}}) = W_{\mathtt{pref}} \circ [g_{\phi}(\mathbf{x}); y_{\mathtt{task}}]$$
$$\mathcal{L}_{\mathtt{pref}} = - \mathop{\mathbb{E}}_{(\mathbf{x}^{0}, \mathbf{x}^{1}, y_{\mathtt{task}}, y_{\mathtt{pref}})} \left[y_{\mathtt{pref}} \log P_{\psi}[\mathbf{x}^{1} \succ \mathbf{x}^{0}; y_{\mathtt{task}}] + (1 - y_{\mathtt{pref}}) \log P_{\psi}[\mathbf{x}^{0} \succ \mathbf{x}^{1}; y_{\mathtt{task}}] \right]$$

• Then, we introduce multiple preference heads $\{W_{pref}^{(t)}\}_{t=1}^{T}$ and maximize KL divergence between their prediction

$$\mathcal{L}_{\mathtt{div}} = \frac{-1}{T-1} \sum_{j=1, j \neq i}^{T} D_{\mathtt{KL}} \left(P_{\psi^{(i)}}(\mathbf{x}^1, \mathbf{x}^0; y_{\mathtt{task}}) || P_{\psi^{(j)}}(\mathbf{x}^1, \mathbf{x}^0; y_{\mathtt{task}}) \right)$$

Overall multi-task learning objective

$$\mathcal{L}_{\texttt{multi}} = \mathcal{L}_{\texttt{task}} + \frac{\mathcal{L}_{\texttt{pref}}^{\texttt{all}}}{\mathcal{L}_{\texttt{div}}} + \lambda_{\texttt{div}} \frac{\mathcal{L}_{\texttt{pref}}^{\texttt{all}}}{\mathcal{L}_{\texttt{pref}}^{\texttt{all}}} = \sum_{t=1}^{T} \mathcal{L}_{\texttt{pref}}^{\psi^{(t)}}$$

Prefer to Classify (P2C): Multi-task Learning

- Classifier is trained using task labels and preference labels jointly with
 - Diverse multi-preference heads for better preference modeling
 - Consistency regularization between task and preference learning
 - To explicitly impose the intuition: "preferred instance should have a higher confidence"
 - To this end, applying following consistency loss

$$\mathcal{L}_{\text{cons}} = y_{\text{pref}} \max\{0, p_y(\mathbf{x}^1) - p_y(\mathbf{x}^0)\} + (1 - y_{\text{pref}}) \max\{0, p_y(\mathbf{x}^0) - p_y(\mathbf{x}^1)\}$$

• Overall, our training loss is as follow:

$$\mathcal{L}_{\texttt{train}} = \mathcal{L}_{\texttt{multi}} + \lambda_{\texttt{cons}} \mathcal{L}_{\texttt{cons}}$$

Prefer to Classify (P2C): Multi-task Learning

- Classifier is trained using task labels and preference labels jointly with
 - Diverse multi-preference heads for better preference modeling
 - Consistency regularization between task and preference learning
 - Selecting informative pairs of input texts
 - Disagreement-based sampling: selecting pairs with high variance across multiple preference predictors $\{h_{\psi^{(i)}}\}_{t=1}^T$
 - Inconsistency-based sampling: selecting pairs with high consistency loss \mathcal{L}_{cons}

Experiments

• Text classification with generative preference

- P2C is consistently effective in improving the performance (accuracy and calibration)
 - bAcc: balanced accuracy as datasets have imbalanced distribution, wAcc: worst-group accuracy (minority)
- P2C also outperforms GPT-3 baselines → Not just distilling "instance-wise" knowledge of GPT-3

	CoLA		SMS Spam		Hate Speech	ı	Emotion	
Method	$Mcc(\uparrow)$	$\text{ECE}(\downarrow)$	$ bAcc(\uparrow) / wAcc(\uparrow)$	$\text{ECE}(\downarrow)$	$ bAcc(\uparrow) / wAcc(\uparrow)$	$\text{ECE}(\downarrow)$	$ bAcc(\uparrow) / wAcc(\uparrow)$	$\text{ECE}(\downarrow)$
Vanilla	63.7±1.0	<u>3.6</u> ±1.6	96.9±0.3 / <u>95.1</u> ±1.5	1.3 ± 0.3	81.1±1.8 / 69.9±4.6	5.1±1.0	88.6±2.3 / 76.1±7.8	4.0 ± 1.1
Label Smoothing	63.9 ± 0.3	4.6 ± 1.2	$96.9_{\pm 0.8}$ / $94.0_{\pm 1.5}$	1.1 ± 0.3	81.5±0.9 / <u>71.3</u> ±3.2	6.6 ± 1.0	$89.8_{\pm 0.8}$ / $76.9_{\pm 6.6}$	4.0 ± 0.9
Max Entropy	64.1±0.3	$4.5{\scriptstyle\pm0.4}$	$96.9_{\pm 1.1}$ / $94.7_{\pm 1.6}$	1.2 ± 0.3	81.6 ± 1.8 / 70.5 ± 4.2	4.3 ± 0.7	89.1±1.1 / 73.1±2.5	3.6 ±0.9
CS-KD	<u>64.5</u> ±1.4	$4.1_{\pm 1.1}$	$96.8 {\scriptstyle \pm 0.9}$ / $94.0 {\scriptstyle \pm 2.4}$	$1.1_{\pm 0.2}$	81.4±2.6 / 69.6±5.1	5.3 ± 1.8	$89.4_{\pm 1.6}$ / $74.0_{\pm 6.8}$	$4.1{\scriptstyle \pm 0.2}$
GPT-3 (0-shot)	60.4	-	90.3 / 84.3	-	68.7 / 41.6	-	50.2 / 23.3	-
GPT-3 (5-shot)	$58.5{\scriptstyle\pm0.4}$	-	$92.2{\scriptstyle\pm0.5}$ / $88.5{\scriptstyle\pm0.7}$	-	$78.5{\scriptstyle\pm2.0}$ / $70.3{\scriptstyle\pm3.6}$	-	$46.6 {\scriptstyle \pm 0.6}$ / $30.3 {\scriptstyle \pm 2.6}$	-
GPT-3 (20-shot)	58.3±1.4	-	$95.8{\scriptstyle\pm0.4}$ / $94.4{\scriptstyle\pm0.7}$	-	77.8 $_{\pm 0.5}$ / 69.0 $_{\pm 1.5}$	-	47.5 $_{\pm1.0}$ / 30.8 $_{\pm4.5}$	-
P2C (Ours)	65.4 ±1.0	2.8 ±1.1	97.4 ±0.4 / 95.2 ±1.0	1.1 ±0.3	82.4±1.3 / 73.6±4.5	4.0 ±0.3	90.7 ±0.7 / 81.7 ±4.7	3.6 ±0.8

11.55% relative test error reduction compared to Vanilla

Test accuracy of fine-tuned RoBERTa-base classifiers

Experiments

- Text classification with extractive preference (Free!)
 - P2C even outperforms the strong baselines for learning with annotation records

Method	Offensive	Polite-Wiki	Polite-SE	MNLI	DynaSent-R1	DynaSent-R2
Vanilla	75.88±0.72	$89.35{\scriptstyle \pm 1.53}$	$70.00{\scriptstyle \pm 1.49}$	$81.92{\scriptstyle \pm 0.70}$	$80.43{\scriptstyle \pm 0.30}$	$71.23{\scriptstyle \pm 1.05}$
Soft-labeling	76.08 ± 1.44	$89.57{\scriptstyle \pm 1.76}$	$70.35{\scriptstyle \pm 1.68}$	$\underline{82.67}{\scriptstyle \pm 0.50}$	81.10 ± 0.33	<u>72.15</u> ±1.59
Margin Loss	<u>76.67</u> ±1.18	$88.51{\scriptstyle \pm 0.93}$	$\underline{70.51}_{\pm 1.16}$	$81.41{\scriptstyle \pm 0.63}$	$80.42{\scriptstyle \pm 0.23}$	$69.27{\scriptstyle\pm0.98}$
Filtering	$76.13{\scriptstyle \pm 1.18}$	$89.50{\scriptstyle \pm 0.87}$	$68.28{\scriptstyle \pm 2.43}$	$82.13{\scriptstyle \pm 0.67}$	$80.38{\scriptstyle \pm 0.34}$	$69.86{\scriptstyle \pm 0.78}$
Weighting	$76.17{\scriptstyle \pm 1.18}$	$89.65{\scriptstyle \pm 1.46}$	$68.38{\scriptstyle \pm 1.67}$	$82.48{\scriptstyle \pm 0.49}$	$80.21{\scriptstyle \pm 0.41}$	71.81 ± 1.12
Multi-annotator	$76.50{\scriptstyle \pm 1.98}$	$\underline{89.88}{\scriptstyle \pm 1.82}$	$69.39{\scriptstyle \pm 2.84}$	$82.61{\scriptstyle \pm 0.70}$	$\underline{81.14}{\scriptstyle \pm 0.55}$	$71.97{\scriptstyle\pm1.25}$
CS-KD	$75.75{\scriptstyle \pm 0.66}$	$89.65{\scriptstyle \pm 1.84}$	$70.10{\scriptstyle \pm 1.29}$	$82.32{\scriptstyle \pm 0.23}$	$80.63{\scriptstyle \pm 0.27}$	$71.81{\scriptstyle \pm 0.67}$
P2C (Ours)	77.81±0.21	91.06±0.64	$71.21{\scriptstyle \pm 0.93}$	83.15±0.29	81.50±0.39	73.06±0.31

7.59% / 4.27% relative test error reduction compared to Vanilla / Best, respectively

Test accuracy of fine-tuned RoBERTa-base classifiers

Experiments

- Comparison between different annotation methods
 - Setup: Given the existing datasets, adding the same number of annotations but different ways
 - Results
 - Overall, preference labels are effective for hard samples (i.e., high disagreement) along with strong calibration effects
 - Subjective preference labels are the most effective for improving accuracy and calibration

Method	$N_{\mathtt{task}}$	$N_{\tt pref}$	$ \operatorname{Acc}_{avg}(\uparrow)$	$\operatorname{Acc}_{\mathtt{hard}} / \operatorname{Acc}_{\mathtt{easy}}(\uparrow)$	$\text{ECE}(\downarrow)$	$d_{\texttt{hard}} \textit{/} d_{\texttt{easy}}(\downarrow)$
Vanilla	7.5k	-	69.03±1.29	$59.33{\scriptstyle \pm 2.57}/80.00{\scriptstyle \pm 1.22}$	$9.25{\scriptstyle \pm 1.39}$	$0.856 {\scriptstyle \pm 0.01} \text{ / } 0.405 {\scriptstyle \pm 0.03}$
Task Labels	12.5k	-	71.17±1.35	$57.86_{\pm 2.31}$ / 84.21 $_{\pm 1.05}$	$9.19{\scriptstyle \pm 1.36}$	$0.878 \scriptstyle \pm 0.04$ / $0.327 \scriptstyle \pm 0.02$
Generative Preference	7.5k	5k	<u>71.46</u> ±1.16	$\underline{61.77}_{\pm 0.94}$ / $82.28_{\pm 1.01}$	<u>6.64</u> ±0.79	$0.850{\scriptstyle \pm 0.02}/0.361{\scriptstyle \pm 0.02}$
Extractive Preference	7.5k	5k	71.36±1.19	$61.16 \pm 1.91 / \underline{83.11} \pm 1.78$	$6.75{\scriptstyle \pm 0.78}$	0.847 ± 0.03 / 0.351 ± 0.03
Subjective Preference	7.5k	5k	71.74 ±1.04	$\textbf{62.08}{\scriptstyle \pm 0.94}/83.01{\scriptstyle \pm 1.27}$	$\pmb{6.09}{\scriptstyle \pm 0.31}$	$0.828 {\scriptstyle \pm 0.02} \text{/} 0.356 {\scriptstyle \pm 0.02}$

Test accuracy of fine-tuned RoBERTa-base classifiers on DynaSent-R2

Summary

• We introduce **preference label** as new auxiliary annotation to improve benchmark

- It provides additional informative training signal to model via "pair-wise" comparison
- We propose an effective multi-task learning framework, coined prefer-to-classify (P2C)
- We provide *three different ways* to obtain preference labels (generative/extractive/subjective)
- P2C shows consistent improvements on various NLP benchmarks
 - Improved test accuracy with better calibration
- P2C suggests new way to evolve benchmark along with recent advance of LM

For more details and results, please see our paper and code

Thank you for attention 😂

