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Problem statement: Definitions
Setup: Online sequential learning where at each time step :


1. Observe batch of  examples  from distribution 


2. Incur loss 


3. Update model weights with one step of SGD:   


t ∈ [T]

B {(xt,k, yt,k)}B
k=1 Pt

Lt(θt) = 1
B

B

∑
k=1

ℓ( f(xt,k; θt), yt,k)

θt+1 ← θt − ηt ∇Lt(θt)



Problem statement: Definitions
Def: Dynamic regret is defined w.r.t. optimal model weights at each time step: 

 




Goal: Design learning rate schedule  with bounded regret  in terms of 
distribution shift .


Motivation: online deep learning recommender systems (DLRS)  same loss function , 
time-varying data distributions 

θ*t = arg min
θ

%(x,y)∼Pt
[ℓ( f(x; θ), y)]

Reg(T) =
T

∑
t=1

Lt(θt) − Lt(θ*t )

{ηt}T
t=1 Reg(T)

γt = ∥θ*t − θ*t+1∥2

→ ℓ
Pt



Example: Chasing a moving target



Linear regression
Time-varying coefficients model: At each time , we get  covariate-response 
pairs





where  is random noise, , and  is least-squares loss.


Approach: Analyze effect of learning rate schedule on SGD undergoing distribution 
shift in the continuous time-limit.


• Tools: stochastic differential equations (SDEs), Euler–Maruyama method, Itô’s lemma


Main result: Solve SDE  discretize to get optimal online learning rate schedule

t ∈ [T] B

yt,k = ⟨xt,k, θ*t ⟩ + εt,k

εt,k = N(0,σ2) xt,k ∼ N(0,I) ℓ

→



Linear regression: Case studies

Bursty shifts: Jump process where  jumps to  every episode (40 steps) and then is zero for the 
rest of the episode. We set max step size . 

Smooth shifts:  changes continuously as  for a constant value . Smaller values of  (i.e., 
larger distribution shifts) induce larger rates.

γt s
ηmax = 0.1

γt γt = 1/tα α α

Optimal learning 
rate schedule η*t

Time t →



Summary of results
1. Large distribution shifts  larger learning rates


• Insights from linear regression also apply to general convex and non-convex losses 

2. We formulate the problem as dynamic regret minimization, where the target  moves and we chase it via SGD


3. Differences w/ related dynamic regret works: Besbes-Bur-Zeevi (Operations Research 2015), Yang-Zhang-
Jin-Yi (ICML 2016):


i) Supports adaptive schedules (vs. choosing a fixed constant step size in advance)


ii) Supports adaptivity in the choice of distribution at each time step (in contrast w/ an arbitrary but fixed 
sequence of loss functions satisfying a variation budget constraint)


iii) Lower bound is for the same loss function as our upper bound, and they match up to constant factors 

4. Experiments: high-dimensional regression, flow cytometry (application of neural networks  medicine)

→

θ*t

→
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