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* Reward function is potentially adversarial
* In episode t, the reward function r;:(s, a) is chosen by an adversary

° Regret minimization the best fixed policy
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Regret = Total reward of policy 7* in T episodes
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Comparison

Value Iteration
(Azar et al., 2017,
Simchowitz & Jamieson, 2019)

Q-learning
(Jin et al., 2018, Yang et al., 2021)
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Standard Policy Optimization (e.g., PPO)
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Standard Policy Optimization (e.g., PPO)
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Policy Optimization with Exploration Bonus
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exploration bonus

(Luo et al. 2021) Policy optimization in adversarial MDPs: improved exploration via dilated bonuses
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(s1,a1) = (s,a), (sy,a5,S3,03 ...) ~ T

1
B:(s,a) zml Zh:ﬁdt(sh)‘l'y

1
= Q™ (s, a; reward = Bd.(5) T y) (Luo et al. 2021)
t

d,(s) := occupancy measure on state s under policy m;

= No longer suffer from distribution mismatch!

(Luo et al. 2021) Policy optimization in adversarial MDPs: improved exploration via dilated bonuses
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even when the reward is adversarial.
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Policy Optimization with Exploration Bonus

(Luo et al. 2021)

Policy optimization with exploration bonus achieves a regret bound of O(H2SVAT)

even when the reward is adversarial.

Issue: The bonus leads to over-exploration in fixed-reward MDPs.

Sample efficiency in fixed environment

?

Robustness against adversary




Joint Bonus and Regularization Design
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Joint Bonus and Regularization Design
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Joint Bonus and Regularization Design

g

e (0 |S) = m7$1x< z m(als) (ét(s; a) + B¢ (s, a)) — Pe(s)D(@(: [s), (- |5))
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D = D+q (Bregman divergence defined by %-Tsallis entropy):

\

~"

J



Summary

e In tabular MDPs, policy optimization achieves the best of both
worlds:

e Similar to VI or Q-learning in fixed-reward MDPs, but additionally handles
adversarial MDPs.

e The key is to jointly design the exploration bonus and regularization
term in an adaptive way.
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